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ABSTRACT

From frosted windows to plastic containers to refractive fluids, transparency and translu-

cency are prevalent in human environments. The material properties of translucent objects

challenge many of our assumptions in robotic perception. For example, the most common

RGB-D sensors require the sensing of an infrared structured pattern from a Lambertian

reflectance of surfaces. As such, transparent and translucent objects often remain invisi-

ble to robot perception. Thus, introducing methods that would enable robots to correctly

perceive and then interact with the environment would be highly beneficial. Light-field (or

plenoptic) cameras, for instance, which carry light direction and intensity, make it possible

to perceive visual clues on transparent and translucent objects.

In this dissertation, we explore the inference of transparent and translucent objects

from plenoptic observations for robotic perception and manipulation. We propose a novel

plenoptic descriptor, Depth Likelihood Volume (DLV), that incorporates plenoptic obser-

vations to represent depth of a pixel as a distribution rather than a single value.

Building on the DLV, we present the Plenoptic Monte Carlo Localization algorithm,

PMCL, as a generative method to infer 6-DoF poses of objects in settings with translu-

cency. PMCL is able to localize both isolated transparent objects and opaque objects behind

translucent objects using a DLV computed from a single view plenoptic observation.

The uncertainty induced by transparency and translucency for pose estimation increases

greatly as scenes become more cluttered. Under this scenario, we propose GlassLoc to

localize feasible grasp poses directly from local DLV features. In GlassLoc, a convolu-

tional neural network is introduced to learn DLV features for classifying grasp poses with

x



grasping confidence. GlassLoc also suppresses the reflectance over multi-view plenoptic

observations, which leads to more stable DLV representation. We evaluate GlassLoc in the

context of a pick-and-place task for transparent tableware in a cluttered tabletop environ-

ment.

We further observe that the transparent and translucent objects will generate distin-

guishable features in the light-field epipolar image plane. With this insight, we propose

Light-field Inference of Transparency, LIT, as a two-stage generative-discriminative refrac-

tive object localization approach. In the discriminative stage, LIT uses convolutional neural

networks to learn reflection and distortion features from photorealistic-rendered light-field

images. The learned features guide generative object location inference through local depth

estimation and particle optimization. We compare LIT with four state-of-the-art pose esti-

mators to show our efficacy in the transparent object localization task. We perform a robot

demonstration by building a champagne tower using the LIT pipeline.
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CHAPTER 1

Introduction

One hundred years following the creation of the word ”Robot,” we are gradually achiev-

ing the promise of the robot with its definition early works of fiction – an artificial agent

with actuators that can perform a variety of tasks and effect changes to the real world. To

engage in physically interaction with the world, robots must be able to perceive the envi-

ronment and perform correct manipulation action in the environment. Figure 1.1 shows

several representative scenarios where robots perform tasks in the real world. It is not hard

to imagine the critical role of vision perception in all these applications (e.g., the robot

needs to detect where to place the delivered items; the robot needs to localize which object

needs to be picked from the bin). The integration of vision perception into robotic ma-

nipulation can date as far back as 1963, when a binary robot vision system was developed

to assist the robot to do obstacle avoidance [6]. Nowadays, a robot’s vision perception is

dominated by the RGB-D camera (shown in Figure 1.5 (a)) – a hybrid vision system with a

conventional RGB camera (passive light sensor) and a structured light depth camera (active

light sensor). The RGB camera provides textured information of the environment, which

has advantages in completing the task of object detection [7, 8, 9, 10, 11] and semantic

segmentation [12, 13, 14, 15, 16] but with the prerequisite of reliable and distinguish-

able textures on the object surface. On the other hand, the depth camera is not relying

on the texture information on the object surface but requires the observable structure light

patterns (structure-light based) or receivable outgoing measurement light (time-of-flight

1



Figure 1.1: Modern robot in a variety of applications. (Top left) Ford robot performs
package delivery task. (Top right) Diligent robot collects equipment for nurse in hospital.
(Bottom left) Nino robot arms act as bartender to serve drinks. (Bottom right) Robots
assemble parts in a factory.

based). In this regard, the depth camera gives an environment 3D structure, which is more

suitable for the task of 3D registration [17, 18, 19, 20, 21] and grasp pose detection in 3D

space [22, 23, 24, 25, 26], for example. Figure 1.2 has shown several representative robotic

manipulation research using RGB and depth sensing. Early research [1, 22, 23] uses a sin-

gle RGB camera to infer robot grasp poses as geometric primitives such as points, lines,

and rectangles. Those representations are relatively straightforward during the inference

step but pose restrictions to the robot when using dexterous grippers or performing elab-

orated tasks (e.g., assembly) that require high localization accuracy. More recent works

leverage the advantages from both RGB and the depth camera, enabling robots to generate

target grasping for more complicated grippers [3, 27], manipulate different kinds of objects

in cluttered environments [2, 4, 28, 29], and perform sophisticated tasks that require long-
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Figure 1.2: Robotic manipulation works using RGB and RGB-D cameras. (Top left) Bar-
rett WAM arm from CMU successfully grasps a bottle from RGB percpetion [1]. (Top
right) ABB robot from UC Berkeley performs a bin-picking task using a depth camera [2].
(Bottom left) Multi-finger grasp poses are generated for a Barrett Hand from Columbia
University with RGB-D input [3]. (Bottom right) Detected grasp poses for Baxter’s hand
from Northeastern University [4].

horizon and active perception [30, 31]. Those works have shown that two types of sensor

– RGB and depth – provide complementary advantages in supporting a great deal of robot

manipulation research and many applications in robotic manipulation.

However, the robot vision perception system is still far from perfect. Figure 1.3 il-

lustrates several challenging scenes for current robot applications. In this dissertation, we

are dealing particularly with transparent and translucent objects, which violate many of

the underlining assumptions we made for the success of the RGB-D camera. Translucent

and transparent objects are very common in domestic environments, making their appear-

ance inevitable in robot manipulation tasks. Our objective is to enable robots to correctly

3



Figure 1.3: Challenging scenes for current modern robot vision perception. (Top left)
Drifting snow on a road can fool even the human vision system, causing problems for
autonomous driving systems. (Top right) Unstructured domestic environments are hard
for robots to reason and perform manipulation. (Bottom left) Transparent and translucent
objects in a domestic environment will violate many of our assumption for robot vision
perception. (Bottom right) Reflective industrial parts will cause a problem for robots’ to
perceiving them.

perceive and perform interaction under transparent and translucency (Figure 1.4). The

vision perception challenges carried by these objects are mainly two fold. First, for con-

ventional RGB cameras, their texture information is highly environment dependent. The

non-Lambertian surface of these objects encodes environment lighting conditions and back-

ground appearance. For instance, transparent surfaces will produce specularity and project

distorted background texture on their surfaces due to refraction. Second, transparent and

translucent objects are almost invisible to the active light sensors. For the structure-light

camera, the projected patterns will transmit through those materials which cannot be cor-

rectly decoded for depth calculation. For the time-of-light camera, the outgoing measuring

lights are very easily refracted by the transparent and translucent material, which can result
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Figure 1.4: Robots perform manipulation for transparent and translucent objects.

in incorrect measurements.

While we assume that transparent and translucent are defined in the light media do-

main, one could argue that sound-based sensors such as sonar (shown in Figure 1.5 (b))

could tackle the problem. Unfortunately, ultrasonic sensors pose a great many more short-

comings for the purpose of robotic manipulation tasks. First, the poor directionality of the

sensor results in large measurement errors (> 10 cm) in the real world [32]. Since most

of the manipulation targets in the domestic environment are at the same level of the error,

the sensor measurement is not reliable for the manipulation task. Second, reflections and

specularities also occur for the ultrasonic data, when the angle between the wave front and

the normal of the smooth surface is large [32, 33], further corrupting the reliability of the

ranging data.

These observations underline the challenges of robotic perception for manipulation un-

der transparency and translucency. Research in this area is still limited, with most of the

existing work [34, 35] taking the invalid reading from the depth camera as the descriptor

for the transparent and translucent objects. This binary description easily reaches its bot-

tleneck in a real-world scenario when the background cannot provide reliable depth or the

scene becomes cluttered.

To address this problem, we turn to the third type of sensor depicted in Figure 1.5 (c),

the light-field camera. This passive light sensor shares many advantages with the conven-

tional RGB camera, but measures a rich, 4D light-field with light intensity and direction that
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Figure 1.5: Three sensor technologies that are already or can be potentially integrated into
a robot perception system: (a) RGB-D camera, (b) ultrasonic ranging sensor, (c) light-field
camera.

implicitly encodes both the texture and geometry. We argue that the light-field sensor is a

well fit for the robotic perception of manipulation problem under transparency and translu-

cency for two main reasons. First, with a 4D light-field of the environment, the specularity

and distortion from transparent and translucent surface will establish distinguishable fea-

tures in the light direction space which is not available for the conventional RGB camera.

Second, because the different light directions in a 4D light-field can be treated as different

viewpoints looking at the same scene, we can also infer the 3D depth information of the ob-

jects. Like the function of the RGB-D camera in the manipulation task for opaque objects,

the light-field camera is well-posed to handle perception challenges under transparency

and translucency. Some initial works conducted by Goldluecke et al. [36, 37] have already

shown promising results in recovering multiple layers of transparency and translucency in

a simulated environment. Building on those ideas, we propose to incorporate light-field

perception for the robotic manipulation tasks under transparency and translucency.

In this dissertation, we exploit the potentials and performance of using light-field per-

ception to recognize and localize transparent and translucent objects for robot manipula-

tion. Aside from pushing the robotic manipulation boundary to more real-world objects, we

expect that light-field sensors would accelerate the next generation of RGB-D perception

for the next level of autonomy in a robot platform.

6



1.1 Contribution

This dissertation introduces light-field perception for robotic manipulation under trans-

parency and translucency. Based on light-field observation, we focus on enabling the robot

to perform grasping actions through inferring grasp pose over transparent and translucent

objects.

A formal formulation of the problem will be: Given a set of light-field observations Z

and corresponding transformation T to the robot coordinate frame Or, we wish to find a set

of feasible grasp pose G in the robot coordinate frame that can be planned and executed by

the robot.

In this dissertation, we have proposed three approaches to address this problem under

different scenarios with different scene clutterness, task complexity, and computation cost.

Plenoptic Monte Carlo Localization (PMCL) uses generative methods to infer the single

object 6-DoF pose under structured environments. The generative inference is highly re-

peatable but computationally expensive. GlassLoc is proposed as a discriminative approach

for finding object grasp pose under cluttered environments. GlassLoc is more computation-

ally efficient but aims for primitive task like pick-and-place action. LIT leverages the power

of a generative and discriminative approach which uses a deep neural network to seman-

tically segment the transparent objects and then performs local generative inference. LIT

is able to estimate the object 6-DoF pose with fast speed under moderately unstructured

environments. More specifically, this dissertation’s contribution includes:

1. PMCL: Plenoptic Monte Carlo Localization (Chapter 3). In PMCL, we introduce

for the first time the light-field descriptor Depth Likelihood Volume (DLV), which

can represent layered translucent environments by representing the depth as a distri-

bution rather than a determinate depth value. We also show that the level of trans-

parency of the object surface is proportional to the likelihood of that point. Building

on DLV, we introduce a generative optimization method to iteratively estimate the
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object 6-DoF pose . The maximum likelihood estimation is then used to transform

the local defined grasp pose to the real environment for robot manipulation.

2. GlassLoc: Plenoptic Grasp Pose Detection (Chapter 4). To grasp transparent ob-

jects in a cluttered environment, instead of estimating each object’s pose, we localize

feasible graspable poses in the scene. In GlassLoc, we introduce the multi-view

DLV construction with reflection suppression for more reliable DLV representation.

We further introduce a convolutional neural network as a discriminative grasp pose

classifier. The network uses the 2D projection of local DLV features as input to label

grasp pose with confidence. For every graspable pose, we verify its feasibility against

robot motion planning pipeline and choose the most confident one for grasping.

3. LIT: Light-field Inference of Transparency (Chapter 5). Real world manipulation

tasks are not limited by grasping and require more fast inference. In LIT, we intro-

duce a generative-discriminative two-stage framework for fast transparent object de-

tection, segmentation, and localization. We introduce an LIT network that regresses

the transparent segmentation and object centers. The network is trained on the pure

synthetic data generated by customized photorealistic light-field rendering environ-

ments. The segmentation and object centers serve as a prior for the second stage

generative inference. At this stage, the optimization algorithm uses object centers

with local DLV to initialize the sampling, and segmentation serves as the optimiza-

tion target. The localized objects with corresponding object labels are then sent to

the robot for the manipulation task.
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CHAPTER 2

Background

This dissertation aims to tackle light-field perception for the pick-and-place manipulation

problem specifically under transparency and translucency. As mentioned in the previous

chapter, the surface reflection and refraction behaviors of transparent and translucent ob-

jects are difficult to characterize using conventional RGB or RGB-D vision sensors. In

contrast, a light-field camera, with its ability to capture both the direction and intensity of

light, makes it possible to describe reflection and refraction in a 4D light-field space. Early

research by Goldluecke et al. [36, 37] explores this possibility by investigating the light-

field epipolar line patterns in recovering reflective surfaces and objects behind translucent

surfaces. Their results have shown that reflection and refraction patterns in epipolar images

can be identified and analyzed accurately with higher order structure tensors. The appli-

cation of light-field sensing in robotics is still limited, however. Recent work by Oberlin

and Tellex [38], for example, uses an RGB camera to mimic the light-field imaging process

by time-lapse capturing from multiple viewpoints. This dissertation work builds on those

insights while extending it further to more challenging real-world scenarios for robotic

manipulation.

In this chapter, we first cover the related works of robotic perception for manipulation

in general. We then introduce the background of light-field sensing with its applications in

robotics.
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2.1 Robot Perception for Manipulation

Beginning with the first general-purpose robot, Shakey-the-robot, the current robot plat-

form is able to reason about its own actions through perception feedback. In particular, in

the robotic manipulation field, we have witnessed many successful manipulation pipelines

building on the modern robot platform. For example, Ciocarlie et al. [39] propose a robust

pick-and-place pipeline for structured environments with a PR2 robot. On an HERB robot

platform, Collet et al. [40, 1] create the MOPED perception framework for localizing ob-

jects in RGB images. Papazov et al. [41] take a bottom-up approach to enable an LWR-III

robot to perform a sequential scene estimation for object manipulation. Similarly, Sui et

al. [42, 28] leverage discriminative and generative methods to build the SUM robot manip-

ulation pipeline on a Progress Fetch robot. With a more generalized perception knowledge

base, the KnowRob system [43] provides a task-oriented manipulation by leveraging dif-

ferent sources of knowledge for a TUM Rosie robot.

Of all the manipulation tasks, grasping is the most fundamental but also the important.

In this section, we will focus on vision perception works that target the problem of robot

grasping. The related works fall into two main categories:

• Object 6-DoF Pose Estimation aims to recover the 6-DoF pose of the target objects

in the scene. Existing methods can be further divided into a matching-based approach

and an end-to-end learning-based approach.

• Grasp Pose Detection (GPD) aims to directly detect feasible grasp poses for the

observations. Different from the pose estimation method, which relies on matching,

the focus of the GPD is to search local features that will fulfill specific requirements.

2.1.1 Object 6-DoF Pose Estimation

The objective of 6-DoF pose estimation is to transform a predefined action in an object

local frame to current observations for robot manipulation. This strategy is widely used in

10



robotic simulation systems [44, 45, 46]. The related works for pose estimation fall into two

categories: a matching-based approach and an end-to-end learning approach.

For the matching-based approach, the objective is either to match the extracted descrip-

tors or the entire object model. To match the extracted descriptors, the Iterative Closet

Point (ICP) [17] is a huge family containing both local features and global features for 3D

registration. For example, the Generalized-ICP [18] uses surface normal for plane-to-plane

matching; NICP [47] combines normal and surface curvature for dense point cloud reg-

istration; CICP [48] clusters points into a united bin and matches them with the surface

normal; and GoICP [49] uses branch and bound optimization to change the standard ICP

into a global optimization problem. Other features, such as the point-pair feature [50] and a

congruent set [20], are also used with a voting scheme or iterative-based methods to achieve

the descriptor matching.

Aside from the descriptor, an entire object model can also be directly registered to the

observations, which is often referred to as analysis-by-synthesis. Match and Refine [51]

tries to find the best match between observation 2D image and rendered image. PERCH [52]

uses tree search to find the best match between a model and a target. D2P [53] extends the

work from PERCH but uses A* search to find the matches for multiple objects in the scene.

APF [54] uses Monte Carlo optimization to localize the given object by comparing the

matching score between the rendered depth image and the observed depth image.

The matching-based approach is explainable but relies heavily on hand-crafted features

or precious object models. Most of these approaches, while repeatable, are also computa-

tionally expensive, particularly when the model or descriptor is dense or large. In contrast,

deep learning methods have been a viable approach for performing accurate and fast infer-

ences for this problem. Early methods [55, 56] focus on the use of convolutional neural

networks to first perform recognition or completion tasks that then follow with pose esti-

mation. Recent work tends to directly regress the 6-DoF pose from the observation. Xiang

et al. [57] proposed PoseCNN to recognize and estimate objects and their 6D poses by de-
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coupling translation and rotation separately in a neural network structure. Other end-to-end

method methods have explored using synthetic data in training [58, 59], pixel-wise voting

over keypoints [60, 61], and residual networks to iteratively refine object poses [62, 63].

2.1.2 Grasp Pose Detection

Grasp Pose Detection (GPD) tries to characterize grasp poses based on the local geometry

or appearance features directly from observations. As such, grasping representation is at

the heart of the GPD approach.

In the early work of robotic grasping, a full knowledge of the 2D or 3D model of the

target is often required to investigate the grasp representation such as force-closure [64]

or form-closure [65], to determine whether a grasp pose is feasible. But in the real world,

partial observation often occurs which means the full object observation is unavailable to

the grasping system. To deal with partial observation, some works [66, 67, 68] represent the

objects by primitive geometry shapes such as spheres, cones, boxes, edges, and contours.

However, these representations still require access to the object models for designing these

simplified shapes.

Instead of building a representation on the objects, other research tries to directly repre-

sent what is graspable in the scene. Some initial tries [69, 70] represent grasp poses using

one point or pair of points. This representation, however, has limitations in modeling dif-

ferent grippers and also introduces strong ambiguities in feature extraction. To tackle that

problem, more recent works [71, 22, 23, 72] have represented the grasp poses as oriented

rectangles in RGB-D observations. Then, given several manually labelled grasp candidates,

the system will learn to predict whether a sampled rectangle is graspable or not. While this

representation is popular even in the most recent research, a major constraint is that the

approaching direction of the generated grasp candidates must be orthogonal to the RGB-

D sensor plane. Fischinger and Vincze [24] tried to lessen this constraint by integrating

heightmap-based features. They also designed a heuristic for ranking the grasp candidates
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in a clutter bin setting. Another approach was taken by ten Pas and Platt [25]. Instead of

detecting the grasp pose in 2D, they directly detected grasp poses in SE(3) space by esti-

mating curvatures and extracting handle-like features in local point cloud neighborhoods.

Gualtieri et al. [26] proposed more types of local point cloud features for grasp represen-

tation and projected those features to 2D image space for classification. While these 3D

representations are often more reliable under changes in lighting, they rely on the quality

of the point cloud. In this dissertation, we extend these ideas to transparent and translucent

objects, which don’t have a reliable texture or 3D point cloud.

2.2 Light-field Perception

2.2.1 The Plenoptics and the Light-field

It is a common practice to describe light using RGB colors in the context of a 2D image.

But in the real world, a light ray is described in a much higher dimensional space using the

so-called plenoptic function [73]. plenoptic is a combination of two Latin words plenum,

meaning ”full” and optics. More specifically, plenoptic function describes a light ray ρ

using Equation 2.1 with seven variables representing seven dimensions of the light – one

dimension of time (T ), one dimension of frequency (λ), two dimensions of direction (α, β),

and three dimensions of space (V ). The more illustrative explanation of plenoptic function

is shown in Figure 2.1(a).

ρ = P (T, λ, α, β, Vx, Vy, Vz) (2.1)

Instead of representing our world with textures and geometry, the plenoptic function

presents a new way to represent the world as a volume flow with light rays. That means

that the action of visual perception is no longer one of reaching out to objects with rays but

of measuring all the light rays that flow through the ideal eyes (depicted in Figure 2.1(b)).

Of course, in the real world, it is virtually impossible and pretty much unnecessary to

13



Figure 2.1: 7D plenoptic function. (a) Parameter explanation of full plenoptic function. (b)
Ideal eye with 360◦ field of view to capture all the light field impinging on the pupil.

have such a device to capture and save all the light flow in space. In 1996, Levoy and

Hanrahan [74] proposed an approximation of the plenoptic function, called the light-field,

for the purpose of image-rendering by reducing the plenoptic function to a four dimensional

space: two dimensions of direction (u, v) and two dimensions of space (s, t). The light-field

representation discards time in favor of static scenes, and frequency is simply replaced by

the RGB channel, which does not figure into the dimensions of the plenoptic function

(Note: We characterize an image captured by a conventional camera as 2D rather than 5D).

More importantly, the light-field representation reduces the space dimension from 3D to

2D by embedding the light ray 3D space information into the intersection of the light ray

with two parallel planes, as illustrated in Figure 2.2. More specifically, the 4D light-field

parameterization can be represented as:

ρ = L(s, t, u, v) (2.2)

In this dissertation, we use plenoptic and light-field interchangeably to refer to the 4D

representation of the light with two dimensions in space and two dimensions in direction.
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Figure 2.2: 4D parameterizations of light rays.

2.2.2 Light-field Cameras

The different kinds of light-field sensors that are available off the shelf can be categorized

as either camera-array-based or microlens-based. Both types of cameras originate from the

conventional RGB camera. We can first investigate what the conventional RGB camera

tells us about the plenoptic function. For a conventional RGB camera, if we assume that

the (u, v) plane in Figure 2.2 is the main lens plane and the (s, t) plane is the sensor plane,

a specific sensor will capture all the light rays going through the main lens. That said, a

2D RGB image is then an integral of the plenoptic function in all possible combinations of

(u, v) and can be represented as
∫
u

∫
v
L(s, t, u, v)du dv. Since the (u, v) plane determines

the light direction, the conventional RGB camera preserves only the intensity of the light.

Then it is straightforward to think that if we have an array of cameras in the space, with

each camera’s main lens at a different position (uc, vc), then this camera system become a

light-field camera, as shown in Figure 2.3 (a). Among all the light-field measuring devices,
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Figure 2.3: Three different light-field measuring devices. (a) Camera array. (b) Artificial
compound eye. (c) Lytro first generation microlens camera. (d) Lytro Illum microlens
camera.

the camera array is the easiest to understand. In nature, some insects also have developed a

similar structure for their eyes. Figure 2.3 (b) shows an example of an artificial compound

eye that mimics the eyes of a fly.

The problem, however, is that the camera-array-based light-field cameras are always

too large to use in robotic applications. Inspired by the 4D plenoptic function, Ng [75]

proposes a microlens-based camera to capture the light field. The proposed design adds a

microlens array between the main lens and photo sensors. Considering the plenoptic func-

tion in this situation, the (s, t) plane aligns with the microlens array with each microlens

located at (sc, tc). Behind each microlens is a group of photo sensors that captures a unique

configuration of (s, t, u, v). A more illustrative explanation is depicted in Figure 2.4.

The biggest advantage of the microlens light-field camera is that it can maintain its

size at the same level as a single conventional RGB camera while capturing the light-field.

But it also brings the high requirements to optical components of the camera. Figure 2.3

(c)(d) show commercial-level microlens array light field cameras. Overall, all the light-field

cameras can be categorized into the class of generalized and computational cameras [76].

2.2.3 Conventions, Visualization, and Applications

An important property of a camera is resolution. The resolution of a light-field camera is

defined on both the (u, v) and (s, t) plane, labeled angular resolution and spatial resolution
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Figure 2.4: Microlens-array based light-field camera. Light rays (light yellow) emitted
from a point on the subject pass through the main lens and focus on the microlens array.
The sensor behind each microlens capture the light rays from a specific direction. For
example, red pixel records the light ray that travels the space whose path is painted red.

respectively. Angular resolution indicates the number of light directions sampled for a sin-

gle point and is determined by the number of photosensors behind each microlens. Spatial

resolution describes the number of points sampled for a real scene, which is determined by

the size of the microlens array. There is always a tradeoff between the spatial and angular

resolution of the camera, with the physical size being nearly proportional to the total pixel

number. For example, a Lytro first generation camera has a total of 11 Megapixels, 10

× 10 angular resolution, and 328 × 328 spatial resolution, while a Lytro Illum camera is

approximately four times that of the first generation, with a total of 40 Megapixels, 14 ×

14 angular resolution, and 552 × 385 spatial resolution. Because of the data size of one

light-field image, most low-end commercial light-field cameras support only a single shot

image rather than a light-field video.

A raw light-field image captured by a microlens camera is difficult to interpret (Fig-

ure 2.5 (Left)) so it is common practice to decompose it into 2D image slides, which we

called sub-aperture images (Figure 2.5 (Right)). Each of the 2D image slides is a query of

plenoptic function with a certain index in the u, v plane; more specifically, a sub-aperture
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Figure 2.5: (Left) Example raw light-field image. A close look at the light-field image
establish that the raw pixel is hard to interpret. (Right) sub-apertures images decomposed
from raw image. Center image labeled with a blue boundary.

image can be represented as L(s, t, u = ui, v = vi). The sub-aperture image located at the

center of the u, v plane is called the center view sub-aperture image.

Research related to the light-field has been steadily increasing in recent years, but the

trend seems to be inversely proportional to the level of integration: highest in computa-

tional imaging, lower in computer vision, and lowest in robotics [77]. In the robotics field,

light-field is deployed primarily for motion planning and odometry [78, 79, 80], a few in

underwater image dehazing [81], and some for street sign recognition in extreme weather

conditions [82]. In this dissertation, we further explore the potential of light-field sensing

for robot manipulation under transparency and translucency.
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CHAPTER 3

PMCL: Plenoptic Monte Carlo Object

Localization for Robot Grasping under Layered

Translucency

3.1 Motivation

From frosted windows to plastic containers to refractive fluids, translucency is prevalent

in human environments. Translucent materials are commonplace in our daily lives and

households, but remain an open challenge for autonomous mobile manipulators. Various

previous methods [83] have enabled robots to navigate autonomously in the presence of

glass and transparent surfaces. When handling objects, however, robot perception systems

must contend with a wider diversity of objects and materials.

Translucent objects, in particular, break many of our assumptions in robot sensing and

perception about opacity and transparency. For example, existing six-DoF pose estimation

methods [28] [52] often heavily rely on RGB-D sensors to reconstruct 3D point clouds.

Such sensors are typically ill-equipped to handle the uncertainty caused by the reflection

and refraction properties of translucent materials. As a result, translucent objects are often

invisible to the robots for the purposes of dexterous manipulation.

An important topic related to this problem is multi-layer stereo depth estimation as

studied by Borga and Knutsson [84]. These findings establish that even transparent sur-
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faces will emit their own patterns. When the pattern from translucent surfaces mixed with

patterns from Lambertian surfaces, the result will be multi-orientation epipolar image lines

in multi-view stereo images. These stereo images can record light fields and equip a robot

with the ability to identify surfaces with transparent properties.

Light field photography offers considerable potential for robot perception in scenes with

translucency. For example, Oberlin and Tellex [38] found that a high-resolution camera on

the wrist of a robot manipulator can capture light fields for a static scene. By moving the

robot end-effector in a designed trajectory, this time lapse approach to capture light field

was demonstrated as capable of manipulating transparent and reflective objects. We now

aim to extend similar ideas to the larger class of translucent materials, along with explicit

pose estimation for more purposeful object manipulation.

In this chapter, we propose Plenoptic Monte Carlo Localization (PMCL) as a method

for six-DoF object pose estimation and manipulation under uncertainty due to translucency.

Our PMCL method uses observations from light field imagery collected by a Lytro camera

mounted on the wrist of a mobile manipulator. These observations are used to form a new

plenoptic descriptor, called Depth Likelihood Volume (DLV). The DLV is introduced to

describe a scene with multiple layers of depth due to translucency. The DLV is then used

as a likelihood function with a Monte Carlo localization method for our PMCL algorithm

to estimate object poses.

We demonstrate the efficacy of PMCL with DLV for manipulation in translucency with

an implementation using a Michigan Progress Fetch robot. We present results of object

localization and grasping for two situations: transparent objects in transparent media (Fig-

ure 3.1) and opaque objects diffusely occluded by translucent media.
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Figure 3.1: (Top row) a robot equipped with a wrist-mounted light field camera correctly
localizing, grasping, and placing a clear drinking glass from a sink of running water. (Bot-
tom row) this grasp is performed by Plenoptic Monte Carlo Localization on the observed
center view image (left), which computes a Depth Likelihood Volume (middle) to localize
the object (right) through generative inference.

3.2 Related Work

3.2.1 Perception for Manipulation

The problem of perception for manipulation remains challenging for robots working in

human environments and the natural world. The presented concepts for PMCL build on a

substantial body of work in this area, which we summarize briefly.

Ciocarlie et al. [39] proposed a robust pick-and-place pipeline for the Willow Garage

PR2 robot. This pipeline segments and clusters points which comprise isolated opaque

tabletop objects observed from an RGB-D sensor. For more cluttered environments, Collet

et al. [40] proposed the MOPED perception framework for localizing objects by discrim-

inatively clustering multi-view features in color images. Narayanan et al. [85] take a de-

liberative approach to infer the pose of objects in clutter from RGB-D observations. This

work performs A* search over possible scene states using a discriminative algorithm for
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3D pose estimation. Similar in its aims, Sui et al. [42, 28] have proposed generative models

for scene inference and estimation. Such generative models combine object detection from

neural networks with Monte Carlo localization algorithms in the scenario of object sorting

on highly cluttered tabletops.

For transparent object perception, McHenry et al. [86, 87] have used reflective features

from transparent objects for segmentation in a single RGB image. Lei at al. [88] segment

out transparent objects by searching failure detection from laser rangefinding (LIDAR)

combined with RGB image features. Methods by Phillips et al. [89] describe detection and

estimation of rotationally symmetric transparent objects using edge features. Lysenkov et

al. [35] perform six-DoF pose estimation of transparent objects based on a silhoutte model

corresponding with invalid RGB-D depth measurements. Partial opacity from translucent

materials can be problematic for such methods, where clear edge features become blurred

due to diffuse reflection.

3.2.2 Light Field Photography

The contributions of this paper are founded upon models described by Levoy and Hanra-

han [74] for understanding light fields and plenoptic functions. Their seminal paper covers

the foundations of capturing light fields from digital imagery and using them to synthesize

new viewpoints from arbitary camera positions. Building on this work, microlens-based

light field photography [90, 75] has witnessed significant advancements in depth estima-

tion, image refocusing, transparent object recognition, and surface reconstruction.

In computer vision, Maneo et al. [91] proposed “light field distortion features” to cap-

ture distortions and recognize transparent objects. Sulc et al. [92] separates diffuse color

components from 4D light field imagery to suppress non-lambertian surface’s reflection.

Wang et al. [93] introduced a light field occlusion model for accurate recovery of the depth

information around the edge where occlusion occurs. Jeon et al. [94] overcome the narrow

baseline problem of light field cameras based on the sub-pixel shift method. This method
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generates accurate depth images even when the displacement of two adjacent sub-aperture

images is less than 1 pixel. Our presented methods for PMCL build directly upon ideas in

recent work by Goldluecke et al. [36, 37] for 3D reconstruction in multi-translucent envi-

ronments. This work proposes generating multi-orientation features observed in epipolar

plane images generated by a light field imagery, with impressive results for 3D reconstruc-

tion in high translucency.

In robotics, Oberlin and Tellex [38] introduced a time lapse approach to capture light

for pick-and-place localization with a Rethink Baxter robot. This work demonstrated com-

pelling results for localizing grasp and placement points in scenes with transparency and

reflection, which has been problematic for current sensors.

Our PMCL method shares similar aims with more general models of translucency in

mind. Further, estimation of six-DoF object pose estimation by PMCL will allow for

greater flexibility in planning and executing manipulation actions. We posit PMCL to be

readily capable of object tracking from plenoptic observations, although such experiments

are left for future work.

3.3 Problem Formulation

Given an input light field image observation Z, the purpose of six-DoF pose estimation is

to infer the rigid transformation from an object’s local coordinate frame O to the camera’s

coordinate frame C. We assume as given the geometry of the target object o. Formally,

we aim to find the maximum likelihood estimate for the object’s pose q given o and a map

representation m in 3D world coordinates:

arg max
q
P (q|m, o) (3.1)

The map m is often computed as a metric representation, such as a 3D reconstruction or

point cloud. In the case of common RGB-D cameras, the map representation is a one-to-
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one mapping from locations in 3D space (x, y, z) into depth value d at pixel index (i, j) of

a depth image. Such a one-to-one mapping assumes opacity in that the sensed depth at a

particular pixel is due to light from only one object.

We propose the Depth Likelihood Volume (DLV) as an alternative one-to-many map-

ping to consider the likelihood of a pixel over multiple levels of depth. As the case for

translucent objects, the DLV representation is advantageous in environments where multi-

ple objects at more than one depth are responsible for the light sensed at a pixel. The DLV

representation expresses m as the mapping:

m :Mρ(x, y, z)→ L(i, j, d) (3.2)

whereMρ(x, y, z) represents a 3D point (x, y, z) along a light ray ρ taken as input. The

output L(i, j, d) is the likelihood of light along the ray ρ emitted from depth d being re-

ceived by pixel (i, j) in the image plane.

For our light field cameras, we assume the image plane is determined by the center view

image of the sub-aperture images extracted from light field observation Z. d is discretized

possible depths along light ray ρ. An overview of our approach to this problem is shown in

Figure 3.2.

3.4 Depth Likelihood Volumes

Before presenting our PMCL method for pose estimation, we first define the Depth Likeli-

hood Volume. We describe the properties of the DLV for distinguishing multiple depths at

a given point in an image due to translucency. The construction of the DLV and its use for

pose localization is described in the following section.
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Figure 3.2: An overview of our Plenoptic Monte Carlo Localization framework. A light
field camera is installed on the end effector of the robot. After taking a single shot light field
image of the scene, sub-aperture images are extracted (center view highlighted in red). The
depth likelihood volume (DLV) is then computed as a 3D array of depth likelihoods over
certain pixels (i, j) for depth d. The DLV is a comparator of color and gradient similarity
between the center view and other sub-aperture images. Assuming a known geometry and
region of interest, the six-DoF object pose is estimated by Monte Carlo Localization over
a constructed DLV.
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Figure 3.3: (Left) a scene with a transparent glass jar containing a ping-pong ball at rest on
an opaque table. Along ray ρ1, two surfaces (incident to the ball and the front surface of the
jar) contributes to the pixel value, while along ray ρ2 only one surface (incident to the table)
appears. (Right) a planar top-down view of rays incident to the ball and the jar. The center
view image plane, (i1, jρ1) receives a weighted sum of light rays reflected from both the
glass surface point G1 and the ping-pong surface P1. Three example rays corresponding to
ρ2 (reflection of the surface from the glass jar), ρ3 (reflection of the ping-pong ball through
the glass), and ρ4 (random ray) received by the image plane with incidence to scene points
(G1, P2), (G2, P1), and (G2, P2), respectively. They indicate three depth dg, dp, di when
form stereo pair with ray ρ1.

3.4.1 Formulation

Given a known 3D workspace and its corresponding center view sub-aperture image plane

I , a Depth Likelihood Volume is defined in Equation 3.2. The DLV makes the following

basic assumptions and notations for the scene:

(1) Each surface point emits light rays ρ in each channel as a Gaussian over (r, g, b)

with mean (µr, µg, µb) and variance (σ2
r , σ

2
g , σ

2
b ) which means ρ = N (λ;µc, σ

2
c ), c ∈

{r, g, b}, as similarly assumed by Oberlin and Tellex [38]. Under constant lighting

condition we assume every point in the scene shares the same variance for the same

color channel which means σc = σ′c, c ∈ {r, g, b} for all points in the scene.

(2) An observed bundle of rays located at pixel plane (i, j) is a linear combination of

all light rays emitted by surface points along the light rays with the normalization

scalers αi. αi indicates the percentage of rays emitted by the surface in observed rays
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which measures the transparency of the surface, and we have
∑

i αi = 1.

Consider the example in Figure 3.3 (Left) of two light rays ρv{i1,j1}, ρ
v
{i2,j2} imaged by

the central view sub-aperture image. The index v indicates center view, and {·, ·} are pixel

coordinates in the center view. These rays are in the 3D space hitting the center view plane

I at (i1, j1), (i2, j2), respectively. Along ρv{i1,j1}, there are two surfaces emitting light which

are sensed by the central view: one is a ping-pong ball and the other is the glass jar. In

contrast, along ρv{i2,j2}, only light emitted by the table is sensed in the central view. Then

ρv{i1,j1}, ρ
v
{i2,j2} can be expressed respectively as:

ρv{i1,j1} = αgρglass + αpρping-pong

ρv{i2,j2} = αtρtable

(3.3)

where ρglass, ρping-pong, ρtable represents the light rays emitted by glass, ping-pong, and table

surfaces, respectively. According to our second assumption, we also have αg +αp = 1 and

αt = 1.

Then the depth likelihood is defined as:

L(i, j, d) =∑
n

maxk ||ρv{i,j}, T nk (ρv{i,j})||2 − ||ρv{i,j}, T nd (ρv{i,j})||2∑
k ||ρv{i,j}, T nk (ρv{i,j})||2

(3.4)

where T nk (ρv{i,j}) is the transformation function finding the light ray corresponding to ρv{i,j}

in stereo pair image index with n that indicates depth k . For light field camera known

baseline b and focal length f , the T nk (·) can be expressed as bf
D

, where D is disparity which

is the function of n and k. ||·, ·||2 is the squared similarity distance between two light rays

over {r, g, b} color space which is defined as L2 distance between two Gaussian mixture

models according to assumption (1) and (2) and can be expressed as Equation 3.9.
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3.4.2 Validity

We claim that for a given (i, j) in DLV the following Lemma holds:

Lemma 1

α1 < α2 ⇐⇒ L(i, j, d1) < L(i, j, d2)

where d1, d2 indicates the true surface depth viewed from center view with transparency

indicator α1, α2. This means, the more transparent a surface, the less likelihood the depth

of this surface will be in the DLV.

To show the Lemma 1, we consider the scene as shown in Figure 3.3 (Right). In the

center view (where DLV will be built), ρv{i,jρ1} (simplify notation as ρ1) contains rays from

the glass surface point G1 and ping-pong surface point P1 which has depths dg, dp respec-

tively. We then evaluate three possible depths in this scene: dg, dp, and a invalid depth di.

For every surface point, corresponding αg, αp, αi are set as αg = α, αp = (1− α), αi = 0.

Notice that α < 0.5 since glass is a transparent surface while ping-pong is not. Using

function T nk (ρ1) we can find three rays (ρ2,ρ3,ρ4) in stereo image n corresponding to three

depths dg, dp, and di separately. Then, we can write ray ρ1 as:

ρ1 = αN (λ;µG1c, σ
2
G1c

) + (1− α)N (λ;µP1c, σ
2
P1c

) (3.5)

where c ∈ {r, g, b} represents three color channels. Without loss of generality, we investi-

gate the red channel and write ρ2, ρ3, ρ4 in same fashion:

ρ2 = αN (λ;µG1r, σ
2
G1r

) + (1− α)N (λ;µP2r, σ
2
P2r

) (3.6)

ρ3 = αN (λ;µG2r, σ
2
G2r

) + (1− α)N (λ;µP1r, σ
2
P1r

) (3.7)

ρ4 = αN (λ;µG2r, σ
2
G2r

) + (1− α)N (λ;µP2r, σ
2
P2r

) (3.8)

Here, we assume that transparent surfaces emit an equal amount of light rays between
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any two stereo images because the disparity range between adjacent sub-aperture views

of the Lytro camera is smaller than ±1 pixel [95] (around 10−4 rads in view angle in our

experiment setting). The squared similarity ( ||·, ·||2 ) distance between ρ1 and any other

rays can be expressed as:

||ρ1(λ), ρn(λ)||2 =

∫
(ρ1(λ)− ρn(λ))2 dλ (3.9)

where n ∈ {2, 3, 4}. Given this general expression of distance, we can now provide

explicit expressions for the example shown in Figure 3.3 Right:

||ρ1(λ), ρ2(λ)||2 = 2(1− α)2(A−N (µP1r;µP2r, 2σ
2
r)) (3.10)

||ρ1(λ), ρ3(λ)||2 = 2α2(A−N (µG1r;µG2r, 2σ
2
r)) (3.11)

||ρ1(λ), ρ4(λ)||2 = ||ρ1(λ), ρ2(λ)||2 + ||ρ1(λ), ρ3(λ)||2

+ 2α(1− α)(N (µG1r;µP1r, 2σ
2
r)

−N (µG1r;µP2r, 2σ
2
r)

+N (µG2r;µP2r, 2σ
2
r)

−N (µG2r;µP1r, 2σ
2
r))

(3.12)

where A = 1√
4πσ2

r

and given the following relation:

∫
N (x;µ,Σ)N (x;µ′,Σ′)dx = N (µ;µ′,Σ + Σ′) (3.13)

For the same object, under 10−4 rads view difference, we assume the color difference

between two surface points have the same scale ∆. This assumption implies, for some

small value ε, that ε > ∆ = |µP1r − µP2r| = |µG1r − µG2r|.

Disregarding constant scale 2, Equation 3.10, 3.11, 3.12 can be simplified as Equa-
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tion 3.14, 3.15, 3.16:

||ρ1(λ), ρ2(λ)||2 = (1− α)2A(1− exp
− ∆2

4σ2
r ) (3.14)

||ρ1(λ), ρ3(λ)||2 = α2A(1− exp
− ∆2

4σ2
r ) (3.15)

||ρ1(λ), ρ4(λ)||2 = ((1− α)2 + α2)A(1− exp
− ∆2

4σ2
r ) (3.16)

Considering an individual stereo pair and applying Equation 3.4, we can now express

the DLV values for the possible depths for the surface of ping-pong ball, dp, the glass

surface, dg, and the invalid depth, di, as:

L(i, j, dp) =
(1− α)2

(1− α)2 + α2
(3.17)

L(i, j, dg) =
α2

(1− α)2 + α2
(3.18)

L(i, j, di) = 0 (3.19)

which implies that the ping-pong surface must return more light than the glass surface:

αg < αp ⇐⇒ L(i, j, dg) < L(i, j, dp), αp, αg ∈ [0, 1] (3.20)

Therefore, Lemma 1 holds.

3.4.3 Computation

Our implementation uses the L2 distance between adjacent pixel colors to approximate

the similarity of rays in stereo pairs, as photosensors are unable to capture the distribution

over wavelengths of light. Considering this limitation, a cost-volume stereo comparison

method based on sub-pixel shift [96, 94] was implemented. Two different cost volumes

were implemented: the sum of L2 distance in color space (Cc) and the sum of gradient
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differences (Cg). The cost volume C then can be defined as:

C(xρ, l) = βCc(xρ, l) + (1− β)Cg(xρ, l) (3.21)

where xρ = (i, j) describes the image coordinate of ray ρ, l is depth labels and β is a scalar

to weight two parts. The terms Cc and Cg are defined as:

C(xρ, l) =∑
s6=sc

∑
xρ∈Rx

min(|I(sc,xρ)− I(s,xρ + ∆x(s, l))|, τ1)

Cg(xρ, l) =∑
s6=sc

∑
xρ∈Rx

γmin(|Ix(sc,xρ)− Ix(s,xρ + ∆x(s, l))|, τ2)

+ (1− γ) min(|Iy(sc,xρ)− Iy(s,xρ + ∆x(s, l))|, τ2)

(3.22)

where I is the image, Ix, Iy is the image gradient in x, y direction, Rx is a rectangu-

lar region that center at xρ; τ1, τ2 is a truncation value of a robust function, ∆x(s, l) is

the sub-pixel displacement, and γ = |s−sc|
|s−sc|+|t−tc| weights different sub-aperture’s gradient

contributions to the center view image. Variables s, t represent pixel in sub-aperture image

index coordinate and sc, tc represent pixel in the center view.

For a certain depth label li, the depth likelihood can be expressed as below based on

Equation 3.4:

L(xρ, li) = log(
arg maxl C(xρ, l)− C(xρ, li)∑

li
(C(xρ, li))

+ 1) (3.23)

Optionally, to further distinguish possible depths, the DLV can be truncated by finding Nlm

number of local maximum with its Klm number of neighbors and setting the other depth

likelihoods to 0.
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Figure 3.4: Test objects for evaluating PMCL 6D pose estimation include: (to the left)
opaque objects behind a partially opaque translucent surface (a stained glass window film),
and (to the right) transparent objects.

3.5 Plenoptic Monte Carlo Object Localization

Building on the DLV, we now describe our method of object pose estimation as Plenoptic

Monte Carlo Localization. PMCL employs particle filtering to estimate the pose of target

objects from the computed DLV. PMCL takes direct inspiration from the work of Dellaert

et al. [97] for approximate inference in the form of a sequential Bayesian filter,

Bel(qt) ∝ p(zt|qt)
∑
j

p(q
(j)
t |q

(j)
t−1)Bel(q

(j)
t−1) (3.24)

where a collection of nweighted particles {q(j)t , w
(j)
t }nj=1 is used to represent the pose belief

qt.

Each particle q(j)t is a hypothesized six-DoF pose of the object and is associated with

the weight w(j)
t indicating how likely the sample is to be close to the actual pose. The ini-

tial samples are generated by uniformly sampling the six-DoF pose with identical weight.

The weight of each sample is then calculated by using the observation likelihood function

described in the next paragraph. With the computed weights, an importance sampling with
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resampling procedure is performed to concentrate hypothesized particles to more weighted

range. For state transition, each particle will be perturbed by a zero-mean Gaussian distri-

bution in the space of six-DoF in the action model. This inference can be naturally extended

to the case of tracking with an explicit action model and observations over time. In our im-

plementation, the process will iteratively repeat until the average weight is above a chosen

threshold for taking an estimate.

Our likelihood function measures the score of a sample’s rendered depth image for a

scene DLV. The z-buffer of a 3D graphics engine is used to render each sample into a depth

image for comparison with the observation. This rendered depth image, represented as

z(j), is mapping back to DLV to find the corresponding depth likelihood interval [ln, lm).

Here, we use an interval because the rendered depth value for a certain pixel may not

exactly match its discretized depth value. After finding the corresponding interval, the

depth likelihood is calculated using linear interpolation:

L(xρ, ln) = L(xρ, ln) +
(l − ln)(L(xρ, lm)− L(xρ, ln))

lm − ln
(3.25)

For the rendered image, with every rendered pixel having non-zero (vaild) depth value li,

the score for this depth image can be expressed as:

L(zt) =

∑
i L(xρ, li)

N
(3.26)

where N is the number of valid depths in the rendered image.

3.6 Results

We now present results for our implementation of PMCL for object localization and grasp-

ing in environments with different forms of translucency. We have implemented PMCL

using observations from a Lytro light field camera mounted on the wrist of a Michigan
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Progress Fetch robot (Figure 3.4). These results consider pick-and-place grasping in two

types of scenes with: 1) a single transparent object with an opaque but possible reflec-

tive background objects (Figures 3.6, 3.6), and 2) opaque objects behind translucent non-

transparent surfaces (Figures 3.6, 3.6).

Our implementation uses the Lytro on-chip wifi to trigger the shutter remotely and

receive raw image data. We are currently unable to capture video with this triggering

system. Calibration and sub-aperture images are generated using the methods described

by Bok et al. [98]. This toolbox generates 9 × 9 sub-aperture images, where the image

at index (5, 5) is deemed the center view image. Each sub-aperture image has resolution

328×328. During DLV construction, we disregard edge sub-aperture images due to strong

color distortion and pixel shifting artifacts. Our PMCL algorithm is implemented on CUDA

and OpenGL. This implementation ran on a Ubuntu 14.04 operating system with a Titan

X graphics card and CUDA 8.0. The light field camera calibration, sub-aperture images

extraction, and DLV construction ran in MATLAB. The chosen parameters for building the

DLV were β = 0.5, τ1 = 0.5, τ2 = 0.5, l = 75, Nlm = 2, and Klm = 2. The Monte Carlo

localization process ran on the GPU with 100 particle samples over 500 iterations.

With an assumed object geometry, our implementation renders all the particle hypothe-

ses on the GPU. These renderings can be accessed by the CUDA kernels to compute the

corresponding weights. Our implementation additionally assumes a given 3D region of

interest on the object pose in workspace.

For robot control, we use our custom manipulation pipeline developed by the Labora-

tory for Progress. This pipeline uses our implementation of handle grasp localization as

proposed by ten Pas and Platt [25]. This grasp localization returns an end-effector pose

for grasping from an estimated object pose with a given geometric model. Grasping is

then executed for this end-effector pose using TRAC-IK [99] and MoveIt! [100] for inverse

kinematics and motion planning.

To evaluate the pose estimation accuracy of our algorithm, we used two methods to
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Figure 3.5: Two types of scene for localizing object poses. (a-b) the scene with a single
transparent object with an opaque but possible reflective background objects. (c-d) the
scene with opaque objects behind translucent non-transparent surfaces

collect ground-truth object poses. For objects behind the window covered by stained glass

film, we captured point clouds by removing the glass and using Asus Xtion Pro RGB-D on

the robot. Object models were then fit manually to determine ground truth pose values. For

transparent objects, their surfaces were covered with opaque tape to generate point clouds

for ground truth annotation.

3.6.1 Pose Estimation Results

We evaluate our proposed algorithm on six scenes and run ten trials for each. Two types of

error are applied to evaluate our pose estimation accuracy:

• Translation error: defined as the Euclidean distance between estimated object posi-

tion (x, y, z) and ground truth position (xgt, ygt, zgt)
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Figure 3.6: The percentage of correctly localized object under different thresholds for the
object behind a stained glass panel and a single transparent object. In each plot, the trans-
lation error bound is fixed to 1cm (a) and 2cm (b). The x-axis is the decreasing dot product
bound indicate the error between ground truth and estimated result. The y-axis is the per-
centage of correctly localized objects. For each type of scene, these plots consider two
types of rotation error ranges: [0, 1] in dot product space indicates for [90,0] in degrees,
and the absolute value [-1,1] in dot product space indicates [180, 0] in degrees.

• Rotation error: defined as dot product between ground truth pose z-axis and esti-

mated pose z-axis. We assume the objects are rotational symmetric along z-axis.

We consider an object is correctly localized when both translation and rotation errors fall

into a certain threshold. Figure 3.6 establishes our estimation accuracy on two types of the

scene.

For the single transparent object, the all rotation error in dot product space laid in [0,1],

which leads to the overlapping of yellow and purple lines in both plots. For an object behind

stained glass panels, the estimated poses sometimes have 180 degree flipping, a negligible

form of error assuming symmetry.

3.6.2 Manipulation Results

We succeed in demonstrating our method in two challenge scenarios for manipulation

1. Pick-and-place glass cup from a sink with running water

2. Pick-and-place bleach bottle from an aquatic tank covered with private window film.

36



Figure 3.7: The robot executes pick-and-place action for the bleach bottle floating on the
water. The bleach bottle is inside the aquatic tank so it is occluded by the stained glass
from the camera view.

The scenarios are shown in Figure 3.1 and Figure 3.7. We attach the Lytro camera to the

wrist of the robot and add extra link for it. For both scenarios, the robot moves its arm to

the appropriate area to capture the light field images, from which the DLV is calculated.

Our PMCL then performs estimation to infer the pose of the object and the final estimation

is taken to transform the pre-calculated grasp poses in robot base link. With the accurate

pose estimation, the robot is able to pick up objects from both aquatic tank and sink and

place the objects on the desired location.

3.7 Summary

In this chapter, we present Plenoptic Monte Carlo Localization for localizing object pose

in the presence of translucency from plenoptic (light-field) observations. We propose a

new depth descriptor, the Depth Likelihood Volume, to address the uncertainties from the

translucency by generating possible depth likelihoods for each pixel. We show that by

using the Depth Likelihood Volume within a Monte Carlo object localization algorithm

our method is able to accurately localize objects with translucent materials and objects

occluded by layered translucency and perform manipulation.
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CHAPTER 4

GlassLoc: Plenoptic Grasp Pose Detection in

Transparent Clutter

4.1 Motivation

Robot grasping in household environments is challenging because of sensor uncertainty,

scene complexity and actuation imprecision. Recent results suggest that Grasp Pose De-

tection (GPD) using point cloud local features [101] and manually labeled grasp confi-

dence [102] can be applied in generating feasible grasp poses over a wide range of objects.

However, domestic environments include a great amount of transparent objects, ranging

from kitchen utilities (e.g. wine cups and containers) to house decoration (e.g. windows

and tables). The reflective and transparent material on those objects will produce invalid

readings from depth camera. This problem becomes more significant in the real world

where there are piled transparent objects which will lead to unexpected robot manipulation

behaviors if the robot was trying to interact with the objects. A correct estimation of trans-

parency is necessary to protect the robot from performing hazardous actions and extend

robot applications to more challenging scenarios.

The problem of performing grasping in transparent clutter is complicated by the fact

that robots cannot perceive and describe the transparent surfaces correctly. Several previous

methods [35, 34] tried to approach this problem by finding invalid values in depth observa-

tion, but they were limited to top-down grasping and made assumption that target objects
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establish distinguishable contour (formed by invalid points) in depth map. Recently, several

approaches employed light field camera to observe the transparency and showed promising

results. Zhou et al. [103] used single shot light field image to form a new plenoptic de-

scriptor named Depth Likelihood Volume (DLV). They succeeded in estimating the pose of

single transparent object or object behind translucent surface by given the corresponding

object CAD model. Based on that, we extend the idea to a more general-purpose grasp

detection scenario with transparent objects clutter.

Figure 4.1: (Top) a robot using GlassLoc to pick up transparent objects from clutter and
place on the tray. The robot is observing the scene using a light field camera. Grasp
candidate is sampled in DLV (bottom left) and mapped to the world frame in the visualizer
(bottom middle). The robot successfully picks up a transparent cup from the clutter (bottom
right).

We make several contributions in this chapter. First, we propose GlassLoc algorithm

for detecting six-DoF grasp poses of transparent objects in both separated and minor over-
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Figure 4.2: An overview of GlassLoc framework. A light field camera is mounted on the
end-effector of the robot. After taking a set of light field observations by moving robot
arms, sub-aperture images are extracted (center view is highlighted in red). The Depth
Likelihood Volume (DLV) is then computed as a 3D volume of depth likelihoods over
transparent clutter. Given gripper configuration, we can sample grasp poses in DLV and
extract grasp features for the classifier to label whether the samples are graspable or not.

lapping cluttered environments. Next, we propose a generalized model for constructing

Depth Likelihood Volume from multi-view light field observations with multi-ray fusion

and reflection suppression. Finally, we integrate our algorithm with a robot manipulation

pipeline to perform tabletop pick and place tasks over eight scenes and five different trans-

parent objects. Our results show that the grasping success rate over all test objects is 81%

in 220 grasp trials.

4.2 Related Work

4.2.1 Grasp Perception in Clutter

It remains a challenging task for robots to perform perception and manipulation in clut-

tered environments considering the complexity of the real world. We consider there are
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two major categories of methods for robots to perform grasp perception in clutter. The first

category is model-based pose estimation methods. By estimating object poses, grasp con-

figurations calculated based on the local model can be further transformed to the robot

environments. Collet et al. [40] utilized color information to estimate poses of object

in cluttered environments. Their proposed algorithm clusters and then matches the local

color patch from object model to robot observations to generate pose hypotheses. Sui et

al. [28, 42] constructed generative models to evaluate pose hypotheses against point cloud

using object CAD models. The generative models perform object detection followed by

particle filtering for robot grasping in the highly cluttered tabletop environments. With a

similar idea, Papazov et al. [41] leveraged RANSAC-based bottom-up approach with Iter-

ative Closest Point registration to fit 3D geometries to the observed point cloud.

On the other hand, rather than associating a grasp pose with a certain object model,

Grasp Pose Detection (GPD) tries to characterize grasp poses based on the local geometry

or appearance features directly from observations. Several early works [22, 23] represented

the grasp poses as oriented rectangles in RGB-D observations. Further, given a number

of manually-labelled grasp candidates, the system will learn to predict whether a sampled

rectangle is graspable or not. One major restriction of those systems is that the approaching

directions of generated grasp candidates need to be orthogonal to the RGB-D sensor plane.

Fischinger and Vincze [24] tried to lessen the restriction by integrating hightmap-based

features. They also designed a heuristic for ranking the grasp candidates in a clutter bin

settings. ten Pas and Platt [25] directly detected grasp poses in SE(3) space by estimating

curvatures and extracting handle-like features in local point cloud neighborhoods. Gualtieri

et al. [26] proposed more types of local point cloud features for grasp representation and

projected those features to 2D image space for classification. Our work with GlassLoc

extends these ideas to transparent clutter with a different grasp representation and a new

plenoptic descriptor.
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4.2.2 Light Field Photography

The models describing the light field rendering proposed by Levoy and Hanrahan [74]

introduced foundations of light field captured from multi-view cameras. Based on this

work, [75, 90] succeeded in producing commercial level hand-held light field camera us-

ing the microlens array structure. Building on the property that the plenoptic camera can

capture both intensity and direction of light rays, light field photography has shown signif-

icant advancement in different applications. Wang et al. [93] explicitly modeled the light

field image pixel angular consistency to generate accurate depth map for the object with

occlusion edges. Jeon et al. [94] performed sub-pixel shifting in image frequency domain

in tackling the microlens camera narrow baseline problem for accurate depth estimation.

Maeno et al. [91] introduced distortion feature in light field to detect and recognize the

transparent object. Johannsen et al. [36] leveraged multi-view light field images to recon-

struct multi-layer translucent scenes. Skinner and Johnson-Roberson [104] introduced a

light propagation model suited to underwater perception using plenoptic observations.

The use of light field perception in robotics is still relatively new. Oberlin and Tellex [38]

proposed a time-lapse light field capturing pipeline for static scenes by mounting a RGB

camera on the end-effector of the robot and moving in a designed trajectory. Dorian et

al. [105] introduced a algorithm for distinguishing refracted and Lambertian features from

light field image. Zhou et al. [103] used a Lytro camera to take a single shot of the scene

and construct a plenoptic descriptor over that. Given the target object model, their meth-

ods can estimate single object six-DoF pose in layered translucent scenes. Our GlassLoc

pipeline extends the idea proposed in [103] for more general-purpose manipulation over

transparent clutter.

4.3 Problem Formulation and Approach

GlassLoc addresses the problem of grasp pose detection for transparent objects in clutter
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from plenoptic observations. For a given static scene, we assume there is a latent set of end-

effector poses G ⊂ SE(3) that will produce a successful grasp of an object. A successful

grasp is assumed to result in the robot obtaining force closure on an object when it moves

gripper and closes its fingers. The plenoptic grasp pose detection problem is then phrased

as estimating a representative set of valid sample grasp poses Gv ⊂ G.

Within the grasp pose detection problem, a major challenge is how to classify whether a

grasp pose is a member of G, and, thus, will result in a successful manipulation. For grasp

pose classification, we assume as given robot end-effector pose q ∈ SE(3) and a collection

of observations Z from a plenoptic sensor. It is assumed that each observation z1:N ∈ Z

captures a raw light field image oi of a static scene from camera viewpoint vi ⊂ SE(3).

The classification result calculated from these inputs is a likelihood l ∈ [0, 1] that relates

the probability of end-effector pose, q, resulting in a successful grasp. Described later, our

implementation of GlassLoc will perform the classification using a neural network.

Illustrated in Figure 4.3, grasp pose classification within GlassLoc is expressed as a

function l =M(U) that maps transparency occupancy likelihood features U to grasp pose

confidence l. Transparency occupancy features U(q,D) are computed with respect to the

subset of a Depth Likelihood Volume (DLV) D that is within the graspable volume of pose

q. The DLV estimates how likely a point p ∈ R3 belongs to a transparent surface. To test

all sampled grasps, a Depth Likelihood Volume D is computed from observations Z over

an entire grasping workspace P ⊂ SE(3) within the visual hull of v1:N . We assume the

grasping workspace is discretized into p1:M ∈ P a set of 3D points, with each element of

this set expressed as pi = (xi, yi, zi).

4.4 Plenoptic Grasp Pose Detection Methods

An outline of the GlassLoc algorithm is described in Algorithm 1. GlassLoc begins by

computing a Depth Likelihood Volume from multi-view light field observations. By in-
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Figure 4.3: Example of DLV value calculation of two randomly sampled points (x1, y1, z1)
and (x2, y2, z2) through examining the ray consistency in different view points. Each sam-
ple point corresponds to different pixel indices with depths in different center view plane
Iv0 and Iv1 .

tegrating different views, we can further post-process the DLV by suppressing reflection

caused by non-Lambertian surfaces. Details of DLV construction are presented in Sec-

tion 4.4.1 and 4.4.2. In Step 2, we uniformly sample the grasp candidates C = {cj ∈ P}

in workspace P . For each grasp candidate, we extract grasp representations (see Sec-

tion 4.4.3) and corresponding transparency likelihood features given the robot gripper pa-

rameter θ. The generated features will then be classified with a grasp success labels and

confidence scores by a neural network. The training data generation strategy for learning

this mapping is introduced in Section 4.4.4. Given classified grasp poses, we use a multi-

hypothesis particle-based search to find a set of end-effector poses with high confidence
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Algorithm 1 GlassLoc Plenoptic Grasp Pose Detection
INPUT: a set of light field observations Z, robot gripper parameter θ
OUTPUT: a set of valid sample grasp poses Gv

1: D = Construct DLV(Z)
2: C = Sample Grasp Candidates(D, θ)
3: for i = 1...K do
4: Gi = Grasp Classification(C)
5: C = Resample Diffuse(Gi)
6: end for
7: Gv ← C

for successful grasp execution (see Section 4.4.5). The finalized set of grasp poses will be

ready for the robot to perform grasping.

4.4.1 Multi-view Depth Likelihood Volume

The Depth Likelihood Volume (DLV) is a volume-based plenoptic descriptor which repre-

sents the depth of a light field image pixel as a likelihood function rather than a determin-

istic value. The advantage of this representation is to keep the transparent scene structure

by assigning different likelihoods to surfaces with different transparency. In [103], DLV

is formulated in a specific camera frame indexed with pixel coordinates and depths. The

formulation is restricted to single-view scenarios. In this chapter, we generalize the expres-

sion which takes sample points in 3-D space as input and integrates multi-view light field

observations.

The DLV is defined as:

L(p) =
N∑
i

f

( ∑
a∈A\Ivi

Ta,d(ρvi(p))

)
(4.1)

Ta,d(ρ) = ||ρ,Fa,d(ρ)|| (4.2)

where L(p) is the depth likelihood of sampled points p. A is the set of sub-aperture

images. ρvi(p) is a light ray that goes through or emitted from point p and is received by
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view point vi at (i, j) in center view image plane. N indicates the number of view points

in observations. Fa,d(ρ) is the triangulation function finding the light ray corresponding to

ρ in sub-aperture images indexed with a that yields depth d. d can be explicitly calculated

using camera intrinsic matrix given point and view point. ||·, ·|| is the ray difference which

is calculated by color and color gradient differences. Denote s =
∑

a∈A\Ivi
Ta,d(ρvi(p)),

then f(s) is a normalization function mapping color cost to likelihood. There are multiple

choices of f(s). In our implementation, we choose:

f(s) =
maxk

∑
a∈A\Ivi

Ta,k(ρvi(p))− s∑
k

∑
a∈A\Ivi

Ta,k(ρvi(p))
(4.3)

To better explain the formulation presented above, we consider the example shown in

Figure 4.3. A cluster of transparent objects are placed on a table with opaque surface. We

have two light field observations z0 = {o0, v0} and z1 = {o1, v1} with center view image

plane Iv0 and Iv1 respectively. There are two points p1 = (x1, y1, z1) and p2 = (x2, y2, z2)

sampled in the space and each of them emits light rays captured by both views. In view Iv0 ,

Ray ρ1 emitted from both points are received by the same pixel (i1, j1), while ρ2 and ρ3 are

received by (i2, j2) and (i3, j3) respectively. Then we can express the depth likelihood of

point p2 as:

L(p2) = f

( ∑
a∈A\Iv0

Ta,d1(ρ1)

)
+ f

( ∑
a∈A\Iv1

Ta,d3(ρ3)

)
(4.4)

Function T calculates the color and the color gradient difference between center view

(rectangle with solid line in Figure 4.3) and sub-aperture view (rectangle with dot line in

Figure 4.3). The location of red pixel is calculated by function F . For micro-lens based

light field camera, the pixel shift between center and sub-aperture images are usually in

sub-pixel level. The realization of F function is based on frequency domain sub-pixel

shifting method proposed in [94].
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Figure 4.4: Example DLV feature image before (middle) and after (right) reflection sup-
pression. The center view of part of raw observation is shown in (left). The intensity of
pixel in the gray-scale image (middle and right) indicates the likelihood value. The high
likelihood region caused by specular light is suppressed.

4.4.2 Reflection Suppression

A transparent surface produces non-Lambertian reflectance, which induces specular high-

light to light field observations. Those shiny spots tend to produce the saturated color or

virtual surface with larger depth than the actual transparent surface. This phenomenon will

generate a high likelihood region in DLV that indicates a non-existing surface. To deal

with this problem, we calculate the variance of ray differences for DLV points which has

saturated color and high likelihood over different view points:

var{ρV (p)} =
N∑
i

∑
a∈A\Ivi

(Ta,d(ρvi(p))− E{ρV (p)})2 (4.5)

where E{ρV (p)} can be expressed as:

E{ρV (p)} =
1

N · (N(A)− 1)

N∑
i

∑
a∈A\Ivi

Ta,d(ρvi(p)) (4.6)

where N(A) is the number of sub-aperture images extracted from raw light field image.

For a point p that has variance larger than a threshold τ , we check whether it has the largest

likelihood value among all other points that lie on the light rays it emits out. Specifically,

we first find light rays emitted from p and received by pixel (i, j) with depth d that has
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Figure 4.5: Training data generation procedure. (a) The glass cup is wrapped with opaque
tape for depth sensor to get point cloud. (b) Grasp candidates are generated based on point-
cloud-based method and local-to-world transform. (c) The glass cup is placed at the same
pose to take multiple light field observations. (d) Grasp candidates generated from point
cloud are mapped to DLV.

large variance over different view points. Then we locate all light rays received by (i, j)

with depth less than d, and check whether the following equation holds:

max
k

∑
a∈A\Ivi

Ta,k(ρvi(p)) =
∑
a∈A\Ivi

Ta,d(ρvi(p)) (4.7)

If Equation 4.7 holds, it indicates this light ray has high possibility of coming from strong

reflection area and will be excluded from the calculation of DLV. Figure 4.4 (left) is the

sliced feature from DLV before reflective suppression which we can observe incorrect large

values caused by specular highlight. Figure 4.4 (right) shows the result after processing and

the previous high value area is suppressed.
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4.4.3 Grasp Representation and Classification

We represent a graspable area as a 3D cuboid with length, width, and height as L,W,H

respectively. The width and height of the cuboid is equal to the width and height of the

volume when the robot finger close while the length is extended for capturing more feature

spaces. The cuboid is voxelized into l × w × h grid, and for each grid we interpolate the

likelihood value by finding the nearest eight points in DLV. Rather than feeding into clas-

sifier with a large amount of points, we extract 2D features from the volume by projection

and slicing.

We first define the three axes of the graspable volume. The x axis of the volume is

defined as the approach direction of the gripper. The z axis is defined along the direction

the gripper fingers close along. The y axis is the cross product of the previous two axes.

We then calculate three types of features and project them to the three axes: a center slice

of likelihood volume, Ic, an average likelihood map over all points, Ia, a sliced difference

likelihood map, Id, which is calculated by recursively comparing the difference between

current slice of the graspable volume with the previous slice. More specifically, we can

express the three types of feature as follows (take projection to x axis as example):

Ic(x, y) = L(x, y, z =
h

2
) (4.8)

Ia(x, y) =

∑h
z=0 L(x, y, z)

h
(4.9)

Id(x, y) =

∑h−1
z=0 |L(x, y, z)− L(x, y, z + 1)|

h
(4.10)

We resize the images to the same size and concatenate them into different channels. Since

we have three types of features and three axes to project, we have nine channels in total.

For classifier, we use the LeNet [106] structure which is a common structure for grasp

pose classification and ranking [26, 107]. The output of the classifier is the binary label

{graspable, not graspable} associated with the confidence scores.
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4.4.4 Training Data Generation

For depth-based grasp pose detection algorithms, the training data generation process relies

on grasp pose sampling and labeling on point cloud. Unfortunately, depth sensors cannot

provide correct point cloud for transparent objects. Instead, we wrap the object with opaque

material and generate training samples by mapping grasp poses from point cloud to DLV.

The detailed steps are illustrated in Figure 4.5 (a) - (d).

We have two sources to produce training samples from point cloud. One is depth-based

grasp pose detection algorithms. We input those algorithms with our depth observations

and label the result grasp candidates as {graspable}. In the meantime, we restore the

grasp poses filtered out in those algorithms and label them as {not graspable}. The other

is transforming pre-defined grasp pose in the local frame to the observation. By check-

ing the gripper collision with the environment, we label the collision free grasp poses as

{graspable} and the others as {not graspable}.

4.4.5 Grasp Search

After we perform classification of our samples, we try to find a graspable region with

relatively high classification confidence score.

Our grasp optimization builds on the particle filtering work proposed by Dellaert et

al. [97], which is based on sequential Bayesian filter:

Bel(qt) ∝ p(zt|qt)
∑
j

p(q
(j)
t |q

(j)
t−1)Bel(q

(j)
t−1) (4.11)

where the weighted particles {q(j)t , w
(j)
t }nj=1 represent the sampled six-DoF grasp poses

with confidence score given by classifier. The initial hypothesis of particles q(j)t are uni-

formly generated in the 3D workspace with the identical weights. For each hypothesis, we

extract the grasp features and compute the weight w(j)
t by normalizing the confidence score

output by classifier. Importance sampling is then performed with resampling process to
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Figure 4.6: Training and testing objects for evaluating our GlassLoc algorithm. Two
objects are used in training: wine cup and short cup (wrapped object for generating point
cloud). Five objects are used in testing: wine cup, toothbrush holder, spoon, short cup, and
tall cup.

concatenate grasp hypothesis to high weights region. In our case, we don’t have actual ac-

tion between two states, instead, we model the state transition in action model as zero-mean

Gaussian noise over SE(3). In other words, after we obtain resampled grasp poses (par-

ticles), we diffuse the particles by adding Gaussian noise over (x, y, z, roll, pitch, yaw) to

generate the new set of particles. Our convergence criterion is a fixed number of iterations.
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Object Trials Success Rate
Toothbrush Holder 60 0.92

Wine Cup 50 0.82
Short Cup 40 0.65
Tall Cup 40 0.88
Spoon 30 0.70
Overall 220 0.81

Table 4.1: Object-wise grasp performance

scene (a) scene (b) scene (c) scene (d) scene (e) scene (f) scene (g) scene (h)
Number of

Total Objects 2 2 2 2 3 3 4 4
Number of

Manipulation Runs 10 10 10 10 10 10 10 10
Object Grasp
Percentage 0.70 0.80 1.0 0.75 0.87 0.43 1.0 0.85

Table 4.2: Results of manipulation experiments for eight scenes. The first row shows the
number of object in the scene. Number of manipulation runs shown in row two refers to
the task runs for the scene. The object grasp percentage refers to successful picking ratio
over all trials for each scene.

4.5 Results

4.5.1 Experimental Setup

To evaluate GlassLoc , we ran a series of experiments with a first generation Lytro camera

and a Michigan Progress Fetch robot. The Lytro camera is mounted on the wrist of the robot

and triggered by on-chip Wi-Fi to take images. In the meantime, the robot will record the

camera view pose based on the current transformation from robot base to the camera. The

Lytro camera intrinsic calibration and distortion correction is conducted using the toolbox

created by Bok et al. [98]. The raw light field image is then decomposed into 9 × 9 sub-

aperture images with resolution of 328 × 328 pixels. The boundary sub-aperture images

usually have strong color noise because of the lens edge affect. In our implementation, we

only keep 7× 7 sub-aperture images and for each image. For each image, we crop 4 pixels

at the margin.

We use two objects to construct our training samples: wine cup and short cup (Fig-
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Figure 4.7: Eight scenes for evaluating GlassLoc pipeline. We randomly choose a number
of transparent objects from the test set and put them on the table for the robot to perform
manipulation on.

Figure 4.8: The robot successfully picks and places all transparent objects in scene (g).
Each column shows the pick and place action over one object in the scene.

ure 4.6). We generate approximate 10k positive grasp samples and 15k negative grasp

samples from 50 scenes containing one or more object instances. For each grasp sam-

ple, we extract corresponding graspable volume from DLV with actual size 0.10× 0.10×

0.06 (meters) and grid density 100 × 100 × 60 (points). We further extract gray-scale

image features and resize them into 100 × 100. Features are concatenated into nine chan-

nels and trained on LeNet structure. We keep the default structure and parameter settings

of LeNet implementation in Tensorflow except the number of nodes in the output layer (2

in our case).
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The DLV construction algorithm is implemented in MATLAB with parallel computing.

A DLV is sampled in a 1.0 × 1.0 × 1.0 (meters) box with grid density at 1000 × 1000 ×

1000 (points).

In grasp search step, we use 100 particles with 100 iterations in our experiment. The

covariance for diffusing grasp pose after each filtering iteration is set to 10−4 (meter2) and

0.03 (rad2) for translation and rotation respectively.

Our implementation takes 2 minutes per view to extract sub-aperture images and 10

minutes to construct DLV on an unoptimized MATLAB code. The light field image decod-

ing and ray corresponding are the current bottlenecks.

4.5.2 Evaluation

We evaluate our GlassLoc manipulation pipeline on eight transparent clutter scenes as

shown in Figure 4.7. In each scene, the number of objects ranges from two to four with

different pose configurations. For each manipulation run, light field images are taken from

two camera poses to construct DLV. After particle filtering reaches the convergence crite-

rion, we randomly select one grasp pose and send it to the execution module. Our robot

motion planning and execution module is built on TRAC-IK [99] and MoveIt! [100]. For

each scene, we perform 10 manipulation runs. We will terminate one run whenever all

objects are successfully picked or the number of manipulation trials exceed the number of

objects.

The manipulation results of each scene are established in Table 4.2. Object grasp per-

centage is calculated based on how many objects have been successfully picked over the

total number of objects that should be picked in all runs of a scene. We also show the pick

success rate for each object in Table 4.1.

Table 4.2 shows that the object grasp percentage is over 75% in most of the scenes.

Our GlassLoc algorithm can generate enough reliable grasp poses based on our DLV con-

structed from light field observations in complex scenes where four transparent objects are
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randomly cluttered. The grasp percentages of these two scenes are 100% and 85% respec-

tively.

Notably, our overall grasp success rate is 81% for the transparent cluttered environ-

ments in 220 grasps. During our experiment, we find that the short cup has the lowest

grasp success rate. In most cases, it was squeezed and then slipped out from the gripper.

The reason is two fold: one is that the surface of the short cup is sharply tilted, which

prevents the robot from performing force closure grasping, the other is that the parallel jaw

gripper hasn’t been equipped with force sensors and is likely to squeeze the cup.

4.6 Summary

In this chapter, we have contributed the GlassLoc algorithm for robot manipulation in

transparent clutter. We use multi-view light field observations to construct the Depth Like-

lihood Volume as a plenoptic descriptor to characterize the environments with multiple

transparent objects. We show that by our algorithm, the robot is able to perform accurate

grasping in tabletop transparent cluttered environments.
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CHAPTER 5

LIT: Light-field Inference of Transparency for

Refractive Object Localization

5.1 Motivation

Recognizing and localizing objects has a wide range of applications in robotics, and re-

mains a very challenging problem. The challenge comes from the variety of objects in the

real world and the continuous high dimension spaces of object poses. The diversity of ob-

ject materials also induces strong uncertainty and noise for sensor observations. Existing

works and datasets [28, 63, 58] cover a variety of texture-rich objects with distinguishable

features between different types of objects. Several other works [108, 62] cover textureless

objects with Lambertian surfaces, where robot sensors can still perceive rich depth informa-

tion. However, many of these assumptions for objects with Lambertian surface properties

are ill-posed for transparent objects.

The challenges imposed by transparency are multidimensional. First, non-Lambertian

surface texture is highly reliant on the environment lighting and background appearance.

Specifically, transparent surfaces will produce specularity from environmental lighting and

project distorted background texture on their surfaces due to refraction. Second, trans-

parent object depth information cannot be correctly captured by RGB-D sensors, which

are commonly used by current object recognition and localization methods. This limita-

tion imposes difficulties in collecting transparent object pose data using current labeling
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Figure 5.1: Demonstration of our LIT pipeline. (Top row) Lytro Illum camera is mounted
on the tripod and robot arm to capture the transparent objects in challenging environments.
(Bottom row) final estimated poses are overlapped to the center view of the observed light-
field image.

tools [109]. As a result, transparent objects remain effectively invisible to robots using the

sensors.

Recently, several works [103, 38] showed promising results using light-field (or plenop-

tic) photography in perceiving transparent objects. For example, Zhou et al. [110] gener-

ated grasp poses for transparent objects by classifying local patch features in a Depth Like-

lihood Volume (DLV) plenoptic descriptor. However, capturing and labeling over light-field

images is time-consuming and computationally costly. Synthetic data is an alternative for

image generation and has shown encouraging results in object recognition and localization.

Georgakis et al. [111] rendered photorealistic images by projecting the object texture model

on the real background for training object detectors. Tremblay et al. [58] proposed DOPE
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as an end-to-end pose estimator using domain randomization and photorealistic render-

ing [112]. We similarly address the problem of transparency using photorealistic rendering

and light-field perception.

Figure 5.2: An overview of the LIT framework with the ProLIT dataset. (a) ProLIT con-
tains 75,000 synthetic light-field images in training set and 300 real images with 442 object
instances in testing set. (b) LIT estimator is a two-stage pipeline. The first stage takes
light-field images as input and outputs transparent material segmentation and object cen-
ter point prediction. The segmentation results are passed through a detection network to
obtain object labels. In the second stage, for each predicted center point, we predict point
depth likelihood by local depth estimation using Depth Likelihood Volume. The particle
optimization samples over center points and converge to the pose that best matches the
segmentation results.

In this chapter, we propose LIT [113] as a generative-discriminative method for recog-

nition and pose estimation for transparent objects. Within LIT, we introduce 3D convo-

lutional light-field filters as the first layer of our neural network. This neural network is

trained purely with synthetic data from a customized light-field rendering system for vir-

tual environments. At run time, the output of this trained neural network is used as input

to a generative inference. The pose estimates resulting from this inference are then used to

perform grasping and manipulation tasks. We introduce the ProgressLIT light-field dataset

(ProLIT) for the task of transparent objects recognition, segmentation, and pose estimation.

The ProLIT dataset contains 75,000 synthetic light-field images and 300 real images from
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Lytro Illum light-field camera labeled with segmentation and 6D object poses. We show the

efficacy of LIT with respect to state-of-the-art end-to-end methods and a generative method

on our proposed ProLIT transparent object dataset. We additionally present a demonstra-

tion of using LIT for a purposeful manipulation task of building a champagne tower in a

sparsely textured environment.

5.2 Related Work

5.2.1 Pose Estimation for Robot Manipulation

6D pose estimation remains a central problem in robot perception for manipulation in re-

cent years. Deep learning methods have been a prevalent approach to perform accurate

and fast inference for this problem. Xiang et al. [57] proposed PoseCNN to recognize and

estimate objects and their 6D poses by decoupling translation and rotation separately in a

neural network structure. Other end-to-end method methods have explored using synthetic

data in training [58, 59], pixel-wise voting over keypoints [60, 61], and residual networks

to iteratively refine object poses [62, 63]. Hybrid (or generative-discriminative) methods

can achieve better performance by using deep networks to give hypotheses of object poses

followed by a second stage of refinement. To get the final pose estimates, a variety of

methods have been proposed for the second stage, including probabilistic generative infer-

ence [28, 114], template matching [115], and point cloud registration [108, 116].

Most deep learning methods for pose estimation are focused on texture-rich objects

or those with texture-less but Lambertian surfaces [115, 108]. Transparent objects bring

challenges in two main aspects, where there is: 1) no reliable depth information, and 2) no

distinguishable environment-independent color textures. Prior works [35, 34] have used in-

valid readings from depth camera to extract object contours for pose estimation. However,

these methods rely on the Lambertain reflections of the background surface to establish

reliable contour of transparent objects. We take inspiration from these ideas for perception

59



from light-field observations in two ways. First, a decent detection or segmentation inter-

mediate result plays an important role in restricting the search area of the 6D object pose.

Further, a deep network trained on a large, elaborately designed synthetic dataset can reach

similar performance with those trained on real world data.

5.2.2 Light-field Perception for Transparency

The foundation of light-field image rendering was first introduced by Levoy and Hanra-

han [74] for the purpose of sampling new views from existing images. Since the seminal

work, light-field cameras have shown advancement in performing visual tasks in challeng-

ing environments with transparency and translucency. Maeno et al. [91] proposed the light-

field distortion features from epipolar images for recognizing transparent objects. Recent

work by Tsai et al. [105] further explored the light-field features to distinguish transparent

and Lambertian materials. The result showed that the distortion features in the epipolar

images can be used to distinguish materials with different refraction properties. Apart from

refraction, specular reflection is another unique property carried by transparent materials.

Tao et al. [117] investigated the line consistency in the light-field images with a dichromatic

reflection model that removes the specularity from the images. Alperovich et al. [118] pro-

posed fully convolutional networks to separate specularity in light-field images. In robotics,

Zhou et al. [103, 110] created a plenoptic descriptor called DLV to model the depth uncer-

tainty in a layered translucent environment. Based on this DLV, the object poses and grasp

poses for robot manipulation are estimated using generative inference. Our proposed LIT

method is built on these ideas above and leverages the power of discriminative and gener-

ative methods with data generation using photorealistic rendering.
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5.3 LIT Estimator

Given an input light-field image L, the objective of LIT estimator is to infer the objects label

l and their poses q in SE(3). The pose q represents the transformation from object local

coordinate frame to the camera coordinate frame. For a light-field image L with spatial

resolution Hs × Ws and angular resolution Ha × Wa, we assume the camera coordinate

frame overlaps with the center view image’s coordinate frame. The object pose q is defined

in center view and parameterized into 3D translation and 3D orientation in quaternion.

5.3.1 LIT Pipeline

The two-stage LIT pipeline is shown in Figure 5.2. The first stage consists of a two-stream

neural network that outputs pixel-wise image segmentation and 2D object center point

locations. This output is followed by a detection network that classifies object labels l

and clusters the corresponding center points. For each estimated center point, we construct

its local DLV to generate depth estimates. The second-stage is a particle optimization

initialized based on network and depth estimates, that converges to the final 6D poses.

There are several insights incorporated in the pipeline design. First, the segmenta-

tion decoder branch in the first neural network performs transparent material segmentation

rather than object-class or instance segmentation. This distinction means it only decides

whether a pixel belongs to a transparent material or not. The rationale for this classifica-

tion is that pixel values within transparent object areas highly depend on the background

and material property, rather than object types. Thus, it is difficult for a single network to

distinguish different objects from raw pixel values. In addition, the center point estimation

branch does not regress multiple keypoints which is common in texture-rich object pose

estimation networks [60, 61]. The further rationale is that transparent objects lack features

that are independent to object poses and environmental changes, such as background and

lighting. In our work, we only predict the 2D object center point location.
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Figure 5.3: Illustration of three light-field filters. Angular filter (AF) has dimension 1 ×
1 × (Ha ×Wa) to capture features in angular pixels. sEPI and tEPI filters have sizes of
n × n × Wa and n × n × Ha respectively, here n refers to kernel size. tEPI also has a
dilation Wa. All features will be concatenated together after passing filters.

5.3.2 Network Architecture

As shown in Figure 5.2, the input light-field image is first decomposed into sub-aperture

image stacks. This structure gives a 3D matrix with size Hs ×Ws × (Ha ×Wa) replicated

for each of the R, G, B channels. The stacks are then going through three light-field filters:

angular filter [119], 3D sEPI filter, and 3D tEPI filter.

• Angular Filter. The angular filter aims to capture the reflection property of 3D

surface points in the direction space of light ray. For instance, a non-Lambertian

surface will establish different colors in a single angular patch while it will be nearly

identical for a Lambertian surface. The angular filter can be expressed as an operation
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over each pixel (x, y) in spatial space (for the jth filter):

g(
∑
s,t

wji (s, t)Li(x, y, (s, t))) (5.1)

where g(·) is the activation function, s and t are the angular indices, wji is the weight

in the angular filter, i ∈ {r, g, b} is the color channel, and Li(x, y, (s, t)) is the 4D

light-field function.

• 3D EPI Filters. Transparent surfaces will produce distortion features because of re-

fraction. In the epipolar image plane, it will produce polynomial curve patterns [105]

which can be distinguished from the background texture without distortion. To cap-

ture distortion features, we propose the epipolar filters using 3D convolution layers

along the two angular dimensions s and t respectively. The 3D EPI filters can be

expressed as:

g(
∑
u,v,s

w̃ji (u, v, s)Li(x+ u, y + v, (s, t)))

g(
∑
u,v,t

ŵji (u, v, t)Li(x+ u, y + v, (s, t)))

(5.2)

where (u, v) is the index of convolution kernel in spatial space, w̃, ŵ are weights in

sEPI and tEPI filters, and we assume the input and output have the same dimension

in spatial space by proper paddings.

Passing through the three customized filters, the embedded features of light-field images

are concatenated. The result goes into an encoder-decoder structure with two branches for

image segmentation and object center point regression. The output of the segmentation

branch is a pixel-wise segmentation of the center view image. Each center view pixel

is then predicted to be on a transparent surface, in the background, or on the boundary

between a transparent object and background in the image. The output of the center point
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branch are the 2D pixel offsets from each pixel to their estimated center position on the

image, as well as a pixel-wise confidence values.

The loss in segmentation branch Lseg is defined as the cross-entropy loss normalized

by class pixel probabilities [10]. The loss of center point regression is mainly following

design in [60], although we only regress the center point positions. The learning goal for

each pixel p inside the segmentation areaM is to regress the offset hp from its location cp

to the object center gp on 2D image. In this way, the loss Lpos is expressed as:

Lpos =
∑
p∈M

‖gp − (cp + hp)‖1 (5.3)

where ‖·‖1 denotes L1 loss. Each pixel’s estimation is associated with a confidence value

bp, and the confidence loss Lconf is defined as:

Lconf =
∑
p∈M

∥∥bp − exp (−τ ‖gp − (cp + hp)‖2)
∥∥
1

(5.4)

where τ is a modulating factor and ‖·‖2 denotes L2 loss. The overall loss L is calculated

as:

L = αLseg + βLpos + γLconf (5.5)

where α, β, γ modulates the importance of segmentation, regression and regression confi-

dence respectively. In practice, we select α = 1, β = 8, γ = 2 from initial experimentation.

An object detection network is appended to differentiate object types based on geometry

shapes from segmentation results. Specifically, the network takes the result of segmentation

decoder branch as input and gives bounding boxes with object labels. Detected bounding

boxes also play the role of clustering object center points. The overall output of the first

stage is a set of bounding boxes, each with an object label and a set of object center points,

which serves as the initial distribution of object center locations for the next stage.

Directly regressing the depth of center points without depth observation is difficult for
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neural networks. Instead, we deploy a DLV plenoptic descriptor [103] to describe the depth

of a single pixel as a likelihood function rather than a deterministic value. The advantage

of using a DLV is that depth likelihood can be naturally leveraged into generative inference

framework in a sample initialization step. The likelihood D(xc, yc, d) of a given center

point located at (xc, yc) in center view image plane Ic can be calculated as:

D(xc, yc, d) =
1

N

∑
a∈A\Ic

Ta,d(xc, yc) (5.6)

where A is a set of sub-aperture views, Ta,d(xc, yc) is the function to calculate the color

intensity and gradient cost of pixel (xc, yc) on a specific depth d. 1
N

is a normalization term

that maps cost to likelihood. Detailed implementation can be referred in [103, 110].

5.3.3 Particle Optimization

The second stage of pipeline estimates the 6D pose of transparent objects in a sampling-

based iterative likelihood reweighting process [120]. Object pose samples are initialized

based on the center point locations from the first stage. During the iterations, rendered

samples are projected to 2D image and their likelihoods are calculated as the similarity

between the projected rendered samples and segmentation results.

5.3.3.1 Sample Initialization

Each sample is a hypothesis of object 6D pose. Its 3D location can be derived from 2D

image coordinate (u, v), depth d and camera parameters. In this way, the probability dis-

tribution of 3D center point locations is formed by leveraging center point candidates and

depth likelihood volume results:

u = cx + fx
x

z
, v = cy + fy

y

z
, d = z

p(X = x, Y = y, Z = z) = b(u, v)D(u, v, d)

(5.7)
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(a) Training Set (b) Testing Set (c) Result

Figure 5.4: (Left) example synthetic light-field images rendered in three different environ-
ments. (Middle) example test images in different backgrounds and different pose config-
urations. (Right) results visualization by overlaying estimated poses to the original test
images.

where b is the confidence value of object center point estimation from neural network,

fx, fy, cx, cy are camera intrinsic parameters, and D is likelihood from DLV in Equa-

tion (5.6). Notably, here we only perform DLV construction in a small region near the

predicted centers. We perform importance sampling over this distribution to initialize the

pose sample locations. The initial orientations of samples are randomly selected in SO(3)

space.

5.3.3.2 Likelihood Function

The probability of each sample during iterations is calculated using the likelihood func-

tion, represented as the similarity between the projected rendered object point cloud and

segmentation results from neural network. Specifically, the object points in its local frame

are transformed by the sample pose and then projected to 2D image plane. The likelihood

function is composed of intersection over union scores of projected rendered point clouds

and segmentation masks on transparent material and its boundary:

weight = η
|Spcd ∩ Sseg|
|Spcd ∪ Sseg|

+ (1− η)
|∂Spcd ∩ ∂Sseg|
|∂Spcd ∪ ∂Sseg|

(5.8)
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where Spcd is the silhouette of projected rendered point cloud, Sseg is the pixels segmented

as transparent materials, ∂Spcd and ∂Sseg are the sets of boundary pixels of Spcd and Sseg

respectively. η is set to modulate importance of boundaries.

5.3.3.3 Update Process

We follow the procedure of iterative likelihood reweighting to produce pose estimations.

The initialized samples are assigned the same weights. Then the process of calculating

likelihood values, resampling based on weights, and sample diffusion is repeated in every

iteration. During diffusion step, each pose sample is randomly diffused in SE(3) space in

translation and rotation with Gaussian noise. The algorithm terminates when the maximum

sample weight reaches a threshold, or the iteration number reaches the limit.

5.4 ProLIT Light-field Dataset

We propose the ProLIT light-field image dataset for the task of transparent object recog-

nition, segmentation, and 6D pose estimation. This dataset contains a total of 75,000 syn-

thetic images and 300 real-world images with 442 object instances, each labeled with pixel-

wise semantic segmentation and 6D object poses. Figure 5.4 shows examples of synthetic

images, real-world images and estimation results from LIT. There are 5 instances of objects

included in the dataset: wine cup, tall cup, glass jar, champagne cup, starbucks bottle with

different geometric shapes. The images are captured using a Lytro Illum camera which is

calibrated by the toolbox described in [121]. The spatial resolution of the calibrated image

is 383×552, and the angular resolution is 5×5 (extracted from 9×9 sub-aperature images

with stride 2). The object poses in testing data are labeled by reprojecting objects directly

into the center view image and matching with observations.

The light-field rendering pipeline is built on NDDS [112] synthetic data generation

plugin in Unreal Engine 4 (UE4). The created virtual light-field capturer has an angular
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resolution 5×5 and spatial resolution 224×224. The baseline between the adjacent virtual

camera is set to 0.1cm. We generate data in three UE4 world environments: room, temple,

and forest. The target objects are rendered using the transparent material. Objects move

in two ways in the environment: flying in the air with random translation and rotation,

or falling freely with collision and gravity enabled. When the objects move, the virtual

light-field capturer will track and look at them with arbitrary azimuths and elevations. Ray

tracing is enabled when capturing images.

Notably, lighting condition is critical for non-Lambertian surface and cannot be per-

fectly reproduced in simulated environments as in the real world. To overcome this issue,

we use the domain randomization approach to highly randomized the lighting conditions

including color, direction, and intensity in each simulated environment. For example, in the

simulated room environment, we set an ambient light with randomized intensity to mimic

the change of sunlight during the daytime. For indoor light sources, we add a collections of

point lights to mimic fluorescent lamps with randomized intensity and randomized on and

off. Together with fluorescent lamps, we also add separated point lights with randomized

intensity, color, and direction to mimic the lights from small household electrical devices.

The randomization from all these light sources will help the neural network learn the un-

derlying invariant features, for instance, object shape and non-Lambertian surface property.

5.5 Experiments

We choose 64 light-field filters as the first feature extraction layer. The LIT network uses

VGG16 [122] as backbone architecture and initialized with pre-trained model on Ima-

geNet [123]. The segmentation branch outputs pixel-wise labels from over three classes:

background, transparent, boundary. The center points prediction branch outputs pixel-wise

offset for each segmented pixels. The detection network is a Faster R-CNN network [8]

with VGG16 backbone. The input to the network is the binary masks of transparent object
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Method gAcc mAcc mIoU wIoU mBFS
2D 0.871 0.500 0.228 0.397 0.140

AF only 0.917 0.501 0.318 0.582 0.197
LIT 0.954 0.520 0.455 0.854 0.390

Table 5.1: Comparison of LIT and baseline methods on transparent material segmentation.
The performance is quantified through global accuracy (gAcc), mean of class accuracy
(mAcc), mean of Intersection over Union (mIoU), weighted IoU (wIoU), and mean BF
(Boundary F1) contour matching score (mBFS). The definitions are detailed in [5]. ‘AF
only’ here refers to the baseline method with only angular filters.

segmentation and the output is bounding boxes with object labels.

5.5.1 Evaluation of Light-field Filters on Image Segmentation

Segmentation is taken as the optimization target in our second stage which is critical to

LIT pipeline. We first compare with two baseline methods to show the advantage of us-

ing light-field images with three light-field specific filters. One baseline takes input of 2D

center view image, which passes through the same neural network structure as LIT except

for light-field filters, the other is an ablation study with only the angular filter. All three

networks are trained on the synthetic dataset containing 75,000 images. Table 5.1 shows

segmentation accuracy results, where LIT achieves better performance than baseline meth-

ods in all metrics. Through the comparison with single RGB input, we show that lighting

direction information captured inside light-field images helps distinguish transparent pix-

els from the background. Through the comparison with only an angular filter, LIT also

achieves higher accuracy, showing that both angular features and EPI features are impor-

tant in contributing to segmenting transparent objects.

5.5.2 Evaluation of Pose Estimation

We compare the 6D pose estimation results of LIT against a state-of-the-art RGBD-based

transparent object depth completion pipeline, ClearGrasp [124], a state-of-the-art RGB-

based general-purpose object pose estimator, DOPE [58], a state-of-the-art RGB-based
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Figure 5.5: Comparison of 6D pose estimation results with respect to ADD-S and Accuracy
Under Curve metric.

textureless object pose estimator, Augmented Autoencoder (AAE) [108], and a generative

light-field based transparent object pose estimation method, PMCL [103].

For the fair comparison with ClearGrasp, we add the second stage generative inference

as 6-DoF pose estimator. Noticeably, the generative inference pipeline we used for Clear-

Grasp and LIT is identical. For the fair comparison with DOPE and AAE, we make both

methods compatible with light-field inputs. We add the three light-field filters in Section 5.3

before the first encoder layer of DOPE network as well as AAE encoder network. We adopt

Faster R-CNN network as the first stage object detector for AAE. All of the learning-based

methods are trained with 75,000 synthetic images for 5 objects. In the second stage of

LIT pipeline, we diffuse the particles with Gaussian noise N (0, 0.08) in translation and
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N (0, 0.4) in orientation. PMCL is a generative method which requires object labels and

3D search space. We initialize PMCL with ground truth object labels and a search volume

with size 40 × 40 × 40 cm3 around the ground truth object locations. The convergence

threshold of particle weights is set to 0.7. We use ADD-S metric [57] to evaluate the pose

results of symmetric objects. We then show the accuracy curves in Figure 5.5 with a dis-

tance threshold of 0.1m. The Area Under accuracy-threshold Curve (AUC) and algorithm

computation time per object are shown in Table 5.2.

AUC wc tc gj cc sb all time(s)/obj
ClearGrasp 0.20 0.27 0.45 0.17 0.24 0.24 5

DOPE 0.14 0.16 0.21 0.16 0.00 0.18 < 1
AAE 0.04 0.15 0.10 0.05 0.32 0.08 < 1

PMCL 0.24 0.32 0.46 0.28 0.34 0.32 300
LIT 0.38 0.32 0.62 0.35 0.44 0.45 10

Table 5.2: Comparison of LIT, DOPE, AAE, PMCL, and ClearGrasp on transparent object
pose estimation. The column headings wc, tc, gj, cc, and sb refer to the wine cup, tall cup,
glass jar, champagne cup, and starbucks bottle objects, respectively. All columns, except
for the last, refers to the area under the curve (AUC) for accuracy-threshold values for the
symmetric objects metric (ADD-S), shown in Figure 5.5.

From the result plots, we find that LIT performs much better than DOPE and AAE, and

better than PMCL and ClearGrasp. For DOPE, we conjecture directly regress the eight 3D

bounding box vertices and their relations is not an optimal strategy for transparent objects.

First, DOPE’s object recognition is embedded in the network but the transparent object’s

texture is not informative to distinguish different objects. Secondly, the eight vertices of

3D bounding boxes are ambiguous for networks to learn the features because of the object

symmetry and lack of distinguishable features for transparent objects. For AAE, it is pos-

sible that it is difficult for the latent variable to learn the embedded features to distinguish

different orientations of transparent objects. Also, it is difficult for the first stage detector

to provide accurate location of the transparent objects, which heavily influences the second

stage translation and orientation estimation. Since PMCL is provided with ground truth la-

bels and search space, it performs comparatively well in the testset. However, PMCL uses

single-view DLV as matching target which includes noise from specularity and distortion
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from transparent surfaces. Furthermore, DLV construction is computationally expensive,

which takes an average 300 seconds for one object. As for ClearGrasp, like other RGBD-

based methods, makes an assumption that background provides valid and smooth depth

points that can infer the accurate segmentation or contour information of transparent ob-

jects. This assumption holds most of the time when transparent objects are separated and

background objects have opaque surfaces. But lots of real world scenarios will break the

assumption, for example, kitchen sinks with running water and wooden table with polished

and reflective top surface. On the contrary, light-field based methods are well-posed for

those scenario because of its capability to describe different surfaces by its reflection prop-

erty. To show that, we further separate the testset into two categories– opaque background

and challenging background – to evaluate five methods’ performance under different back-

grounds. Overall, LIT pipeline provides better accuracy than all three baseline methods on

the testing dataset with a relatively small computationally cost.

5.5.2.1 Opaque Background Results

To evaluate all methods’ performance under opaque background, we select test cases whose

background is fully visible from depth camera. Examples are illustrated in Figure 5.6. The

corresponding results are shown in Figure 5.7 and Table 5.3.

Figure 5.6: Example of RGB-D image pairs for opaque background. (Top row) color image
of the background objects. (Bottom row) corresponding point cloud captured by the depth
camera.
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Figure 5.7: Comparison of 6D pose estimation results under opaque background with re-
spect to ADD-S and AUC metric.

When a transparent object in an opaque background, its invalid depth readings will

depict a distinguishable contour to indicate its shape and location information. With this

insight, ClearGrasp further leverages the predicted normals, contact edges, and segmen-

tation from color images to reconstruct the scene. Different from ClearGrasp, the light-

field-based method directly distinguish different materials by their reflection and refraction

features over light-field sub-aperture space. But in an opaque background, an RGB-D cam-

era can obtain the same information by looking into the invalid readings in depth images.

Results have shown that ClearGrasp can perform comparably well or even better for some

objects compared with light-field-based methods. However, we see LIT still performs bet-

ter in overall AUC, especially for wine cup and champagne cup. These two objects have

thin handles which is difficult to capture if using invalid points as shape descriptor because
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AUC wc tc gj cc sb all
ClearGrasp 0.25 0.42 0.45 0.26 0.60 0.35

DOPE 0.17 0.00 0.26 0.00 0.00 0.12
AAE 0.01 0.15 0.18 0.05 0.32 0.09

PMCL 0.16 0.30 0.45 0.16 0.30 0.26
LIT 0.43 0.25 0.71 0.41 0.59 0.51

Table 5.3: Pose estimation results of LIT, DOPE, AAE, PMCL, and ClearGrasp under
opaque background.

it is always corrupted by noisy points from other parts. But for LIT , it will directly segment

the pixels that belong to the target transparent objects from light-field image which won’t

be affected by part size and background noise.

5.5.2.2 Reflective Background Results

Unlike opaque background, reflective background poses more challenges for RGB-D cam-

eras for object pose estimation. Figure 5.8 shows three examples of reflective background

that are prevalent in our daily lives. The large area of invalid readings in the point cloud

makes the assumption that the invalid depths belong to target transparent objects no longer

holds. The results shown in Figure 5.9 and Table 5.4 establishes that light-field-based

methods performs much better than the RGB-D based methods.

Figure 5.8: Example of RGB-D image pairs for reflective backgrounds. (Top row) color
image of the background objects. (Bottom row) corresponding point cloud captured by the
depth camera.

If we further calculate the AUC difference between Table 5.3 and Table 5.4, we can find

that LIT is less sensitive to the background changes while ClearGrasp highly relies on the
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Figure 5.9: Comparison of 6D pose estimation results under reflective background with
respect to ADD-S and AUC metric.

opaque background to provide clear boundary and contour of the target transparent objects.

5.5.3 Champagne Tower Demonstration

LIT is also integrated into a robotic manipulation pipeline for a purposeful manipulation

task of building a champagne tower in a sparsely textured environment, as shown in Fig-

ure 5.10. In the initial setup, the champagne cups are randomly placed on a textureless

white table. The Lytro Illum camera takes a light-field image and transfer the image with

on-chip wifi. The Lytro camera’s extrinsic matrix is calibrated with robot world frame. LIT

then performs pose estimation over the scene followed by transforming pre-defined grasp

poses to the observation. With the accurate pose estimates, the robot is able to pick up all

champagne cups from the table and arrange them into a champagne tower.
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AUC wc tc gj cc sb all
ClearGrasp 0.13 0.12 0.21 0.046 0.13 0.12

DOPE 0.00 0.24 0.18 0.27 0.00 0.22
AAE 0.09 0.16 0.06 0.03 0.00 0.08

PMCL 0.30 0.33 0.47 0.39 0.37 0.36
LIT 0.43 0.39 0.52 0.21 0.26 0.37

Table 5.4: Pose estimation results of LIT, DOPE, AAE, PMCL, and ClearGrasp under
reflective background.

5.6 Summary

We introduce LIT, a two-stage generative-discriminative object and pose recognition method

for transparent objects using light-field observations. LIT employs the learning power of

deep networks to distinguish transparent objects across light-field sub-aperture images. We

show that the network trained only on synthetic data can deliver a good segmentation on

transparent materials, which is served as matching target for second stage pose estima-

tion. Along with the method, we propose the light-field transparent object dataset includ-

ing synthetic and real data for the tasks of object recognition, segmentation, and 6D pose

estimation. We demonstrate the use of LIT for a purposeful robot manipulation task over

transparent cups. However, our method still has limitations in cluttered environments where

the first stage segmentation results cannot provide distinguishable object shapes for second

stage refinement. Also, our ProLIT testing set is majorly collected in indoor environments

representative the lab space used by the Laboratory for Progress. More specifically, our lab

space has an array of fluorescent lamps, which can be treated as spot light, and a collection

of other electric devices like monitors and TV screens which can be treated as point light.

In the day time, there will be extra sun lights transmitted through windows but it won’t be

major light sources for our dataset. We aim to further extend to different light conditions

in our future work. Other possible future works built on LIT could be instance-level seg-

mentation based on transparent objects and single-view light-field depth estimation directly

predicted by neural network.

76



Figure 5.10: The robot is building a champagne tower by successfully picking and placing
champagne cups on the table. The first row shows light-field observation (left) and pose
estimation result from LIT (right). The following five rows show pick and place actions to
finish the champagne tower.
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CHAPTER 6

Conclusion and Discussion

6.1 Conclusion

A general-purpose robot can perceive and interact with all kinds of objects in the real-

world, can be immensely powerful, and is an ultimate goal for the robotic community. To

reach the goal, transparency and translucency is one of the biggest challenges of robotics

perception. As such, roboticists must draw greater attention to the study of different sensor

modalities and corresponding approaches for robotic manipulation under transparency and

translucency.

Therefore, this dissertation focuses on the two major robotic perception challenges

brought about by transparency and transparency: 1) invalid measurement in the depth do-

main and 2) highly variant textures in the RGB domain.

In the depth domain, we present a novel plenoptic descriptor Depth Likelihood Volume

(DLV) as an alternative depth representation. DLV represents depth as a likelihood func-

tion by investigating light ray consistency in light-field sub-aperture images. Benefiting

from this representation, PMCL (Chapter 3) and GlassLoc (Chapter 4) can perform gener-

ative or discriminative inferences under transparency and translucency. In an uncluttered

environment, PMCL can estimate a single object’s 6-DoF pose using particle optimiza-

tion. With PMCL, we have shown a Fetch robot that can execute pick-and-place actions

towards objects. GlassLoc further extends the ability of robots to perform manipulation
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under transparent clutter by learning local geometric features from a multi-view DLV. The

learning process is carried out by a convolutional neural network and outputs feasible grasp

poses with a confidence score. GlassLoc enables the robot to perform table cleaning tasks

for household transparent objects.

In the RGB domain, we observe that a transparent object’s reflection and refraction

produces uneven color distribution and distorted epipolar lines in light-field sub-aperture

images. By leveraging this insight with DLV, we present LIT (Chapter 5) as a two-stage

generative-discriminative method for fast transparent object segmentation and localization.

By learning reflection and refraction features using light-field filters, LIT is able to segment

transparent objects and predict their object centers. Given segmentation and object centers,

LIT performs generative inference over object locations. We demonstrate LIT outperform-

ing four state-of-the-art object pose estimators and enables our robot to build a champagne

tower from scratch.

In sum, this dissertation presents plenoptic-sensing-based perception for robotic ma-

nipulation approaches that leverages both the generative and discriminative methods for

estimating transparent and translucent object pose and grasp pose under different scene

clutterness, task complexity, and computation efficiency.

6.2 Strengths and Limitations

In this section, we first establish the strengths and limitations of using light-field perception

in robotic manipulation over other mainstream sensors such as RGB and RGB-D camera.

We then establish the strengths and limitations for each method proposed in this disserta-

tion.
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6.2.1 Comparison between Different Sensor Modalities

In Chapter 5, our experiments between RGB and light-field images on object segmentation

indicate that light-field features largely increase the method’s ability to distinguish differ-

ent object surfaces. Further ablation studies between different light-field filters in the LIT

network suggest that the different reflective and refractive features in the light-field sub-

aperture space work jointly in improving the overall object segmentation results. More

importantly, the following pose estimation results between three different sensor modali-

ties have shown that light-field-based methods are also more robust in handling challenging

real-world environments such as a sink with water or a steel shelf. Compared with RGB-

D methods, which rely on the binary classification of object surfaces (valid/invalid depth

readings), light-field-based methods can perform a more accurate and reliable classifica-

tion over light direction space. Another benefit of using a light-field camera over an RGB

camera is that it requires less information gain actions to sample light rays in the space. For

instance, if we want to sample 100 different light ray directions for a scene, we need only

perform one capture action by a light-field camera with 100 angular resolution while an

RGB camera would need 100 actions to achieve the same results. Moreover, the light-field

camera samples the light rays uniformly regardless of robot movement, while the RGB

camera relies heavily on robot movement to guarantee its sampling quality.

Nevertheless, the limitations of light-field perception are also obvious. Because of the

extra light direction information, a light-field image can easily reach 100 times or more

in size compared with a conventional RGB camera. The larger image size also requires

a sophisticated optical device, which results in greater difficulties in calibration and the

need for more computational power and space to process the data. For instance, the LIT

model used in Chapter 5 is twice as large as the RGB-input model, and the primary portion

of the network weights are in the 3D light-field filter part. The size of the model further

limits the application of the light-field in a time-sensitive task, such as real-time tracking.

In the meantime, the large size of the light-field image limits its application in light-field
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video capturing. Most off-the-shelf commercial light-field cameras are capable of only

capturing single frames of light-field images. Apart from its large size, a raw light-field

image also requires a more complicated calibration step. Take a microlens array light-

field camera, for example. The lenslet introduces an extra level of difficulty because of

both its location and intrinsic need to be calibrated separately using special patterns [98].

Fortunately, researchers are increasingly trying to address these issues on the hardware end;

see [125], for example.

6.2.2 Comparison between Proposed Methods

In this dissertation, the proposed light-field descriptor DLV can capture multiple layers of

depth by investigating the ray consistency over sampled light directions. To capture the

target object in a scene while sampling a light ray’s direction in a wider cone of vision,

we need to balance the distance between the light-field camera and the object. When per-

forming DLV construction, the first generation Lytro camera’s working range is from 30

centimeters to 120 centimeters while a Lytro Illum can work from 30 centimeters to 200

centimeters. Another way to increase light ray sampling directions is by incorporating mul-

tiple view angles. This strategy requires an accurate camera-robot calibration to perform

ray tracing over different angles. In GlassLoc, we have talked about using light rays’ vari-

ance to perform specularity reduction. The same method can be used over opaque surfaces

for DLV consistency checks in multi-view DLV construction. When capturing multi-view

light-field images, we need to wait for the robot’s arm to stay stable to avoid motion blur.

Theoretically, if we can capture all light rays in a specific space, we can construct a DLV

that includes all possible surfaces in the scene. But in real-world implementation, when

there are multiple translucent surfaces (> 2) along a light ray, DLV has difficulty capturing

the surfaces located behind the second surface because of the relatively low resolution of

our current light-field camera as well as the complicated light ray bouncing behavior in

multiple layers of the translucent surface.
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Method-wise, PMCL is good at generating multi-depth representation for static scenes

and its pose estimation results are repeatable under single object scenes. However, con-

structing DLV from a single view light-field observation cannot properly handle the estima-

tion noise introduced by specularity. Furthermore, the generative inference stage requires

a ground-truth object label, CAD model, and approximate 2D bounding box, all of which

restrict the method’s application in multiple object scenarios.

By further introducing the multi-view DLV construction and specularity suppression,

GlassLoc enables the robot to perform pick and place under transparent clutter without

priors on object label, model, and rough location in manipulation. Nevertheless, GlassLoc

requires a complicated step in preparing training data and has difficulty dealing with scenes

mixing transparent and opaque objects. Furthermore, the property of grasp detection deter-

mines that GlassLoc has constraints in performing more task-oriented manipulation apart

from pick-and-place.

LIT leverages strengths from both PMCL and GlassLoc, which enables the robot to

perform accurate transparent object localization in daily environments. LIT also substan-

tially speeds up the pipeline by using network output as a prior and then calculating local

DLV only on the regions of interest. Together with LIT, we also proposed a ProLIT dataset

including a pure synthetic training set and a real-world testing set. Our evaluation results

on the ProLIT dataset have shown that LIT outperforms four state-of-the-art object pose

estimators on the testing set. However, the ProLIT testing set are collected primarily in an

indoor Lab environment with a relatively stable lighting condition. As we mentioned in

Chapter 5, the lighting condition plays an important role in establishing non-Lambertian

surfaces’ appearances. Even though an indoor environment includes most of the common

light sources (e.g., ambient light, direction light and point light), the different background

materials and environment space will also affect the light ray transmission. For some ex-

treme cases (e.g., dark room with barely any lights, outdoor environments with strong sun

light), non-Lambertian surfaces will appear very different compared with ordinary lighting
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conditions. Even though we perform domain randomization in our training set to try and

cover as many lighting conditions as possible, some corner cases still remain to be investi-

gated. As such, one potential future work is to evaluate LIT’s performance under different

lighting conditions.

6.3 Future Work

This dissertation provides several insights in addressing the challenges brought about by

transparency and translucency in robotic manipulation. In particular, when tackling the

problem of scenes with multiple layers of depth, DLV is proposed to represent depth along

a light ray as a likelihood function. This representation divides space into a collection of

3D voxel grids and hypothesizes that each grid can emit lights with a specific combination

of RGB color. By comparing the hypothesized light-field with the observed light-field,

DLV converges to its most likely state in which each grid has a belief as to how likely it

is to belong to an object surface. Nevertheless, as mentioned in the preceding section, this

construction process is computationally expensive as it requires sampling light directions

and intensities over each of the 3D voxel grids.

A recent work in view synthesis using Neural Radiance Fields (NeRF) [126] shares a

similar idea but uses neural networks to dramatically speed up the scene representation con-

struction step. NeRF is a multi-layer perceptron (MLP) network that takes 5D coordinates –

3D location (x, y, z) and 2D view pose (light direction, i.e. (θ, φ)) – as input. The output is

the RGB channel values with one volume density channel σ. Thus, we can interpret NeRF

as a function approximation of the light-field, and its training process concurrently learn a

DLV similar descriptor. However, NeRF needs a great deal of training data and requires an

extremely long training time, thus making it impossible to perform online light-field model

construction. One possible future direction to overcome this limitation is decoupling light-

ing from its original model. The original NeRF learns the light-field model with baked
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lighting conditions, which increases the learning complexity and cannot be generalized to

a new environment. Apart from treating lighting as a separate network, another potential

way to decrease NeRF’s training cost is to input light-field images rather than multi-view

conventional RGB images. The difference between these two types of images is the way

they sample the light direction: a light-field image samples light rays uniformly while a

multi-view RGB image performs random sampling. We believe uniform sampling will

help the NeRF learn light ray distribution with less data and faster convergence behavior.

Apart from leveraging the insight from NeRF, this dissertation’s explorations in light-

field perception for manipulation provide many other possible directions for future investi-

gation.

6.3.1 Grasp Pose Detection under Cluttered Scenes Mixing with Trans-

parent and Opaque Objects

In Chapter 4, we proposed GlassLoc for detecting transparent objects’ grasp poses under

minor cluttered environments. A more generalized scenario would be to mix transparent

objects with opaque objects; for example, a bin-picking application with both transparent

soda bottles and opaque candy boxes. Different from pure transparent objects in GlassLoc,

mixed scenes bring about greater challenges, both in extracting graspable features and fil-

tering out grasp poses that are in collision. While the graspable volume defined in GlassLoc

could be extended to a more generalized gripper, we have left the exploration of different

grasp volume designs for different types of scenes and grippers as future work.

6.3.2 Dense Surface Reconstruction for Reflective and Refractive Ob-

jects

In the LIT framework, we have shown that light-field filters with a two-branch encoder-

decoder network can segment target transparent objects from a target scene and estimate
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its object centers. With this insight, a possible extension to the LIT network is to add extra

decoder structures to further estimate a transparent object’s surface normals even depths.

If we can collect inference results across multiple observations of a static scene, a possible

next step will be to fuse those estimations across frames and reconstruct the reflective and

refractive objects.

6.4 Summary

This dissertation presents plenoptic-sensing-based perception for robotic manipulation ap-

proaches that enable robots to perform manipulation actions over transparent and translu-

cent objects in real world scenarios. More specifically, we present three plenoptic-based

pipelines that can estimate object pose and grasp pose under transparency and translucency

using discriminative-generative methods. We have shown that light direction clues in the

light-field epipolar image space is able to capture the reflection and refraction features and

even infer the surface depth of transparent and translucent objects. Our exploration over

robotic plenoptic sensing lead to a collection of promising future directions that make it

possible for our robot to be a powerful and reliable assistant in performing all sorts of daily

house-work in the near future.
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